Reusable glycan microarrays using a microwave assisted wet-erase (MAWE) process.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Akul Y Mehta, Catherine A Tilton, Lukas Muerner, Stephan von Gunten, Jamie Heimburg-Molinaro, Richard D Cummings
{"title":"Reusable glycan microarrays using a microwave assisted wet-erase (MAWE) process.","authors":"Akul Y Mehta, Catherine A Tilton, Lukas Muerner, Stephan von Gunten, Jamie Heimburg-Molinaro, Richard D Cummings","doi":"10.1093/glycob/cwad091","DOIUrl":null,"url":null,"abstract":"<p><p>Modern studies on binding of proteins to glycans commonly involve the use of synthetic glycans and their derivatives in which a small amount of the material is covalently printed onto a functionalized slide in a glycan microarray format. While incredibly useful to explore binding interactions with many types of samples, the common techniques involve drying the slides, which leads to irreversible association of the protein to the spots on slides to which they bound, thus limiting a microarray to a single use. We have developed a new technique which we term Microwave Assisted Wet-Erase (MAWE) glycan microarrays. In this approach we image the slides under wet conditions to acquire the data, after which the slides are cleaned of binding proteins by treatment with a denaturing SDS solution along with microwave treatment. Slides cleaned in this way can be reused multiple times, and an example here shows the reuse of a single array 15 times. We also demonstrate that this method can be used for a single-array per slide or multi-array per slide platforms. Importantly, the results obtained using this technique for a variety of lectins sequentially applied to a single array, are concordant to those obtained via the classical dry approaches on multiple slides. We also demonstrate that MAWE can be used for different types of samples, such as serum for antibody binding, and whole cells, such as yeast. This technique will greatly conserve precious glycans and prolong the use of existing and new glycan microarrays.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969520/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/glycob/cwad091","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Modern studies on binding of proteins to glycans commonly involve the use of synthetic glycans and their derivatives in which a small amount of the material is covalently printed onto a functionalized slide in a glycan microarray format. While incredibly useful to explore binding interactions with many types of samples, the common techniques involve drying the slides, which leads to irreversible association of the protein to the spots on slides to which they bound, thus limiting a microarray to a single use. We have developed a new technique which we term Microwave Assisted Wet-Erase (MAWE) glycan microarrays. In this approach we image the slides under wet conditions to acquire the data, after which the slides are cleaned of binding proteins by treatment with a denaturing SDS solution along with microwave treatment. Slides cleaned in this way can be reused multiple times, and an example here shows the reuse of a single array 15 times. We also demonstrate that this method can be used for a single-array per slide or multi-array per slide platforms. Importantly, the results obtained using this technique for a variety of lectins sequentially applied to a single array, are concordant to those obtained via the classical dry approaches on multiple slides. We also demonstrate that MAWE can be used for different types of samples, such as serum for antibody binding, and whole cells, such as yeast. This technique will greatly conserve precious glycans and prolong the use of existing and new glycan microarrays.

使用微波辅助湿擦(MAWE)工艺的可重复使用聚糖微阵列。
蛋白质与聚糖结合的现代研究通常涉及合成聚糖及其衍生物的使用,其中少量材料以聚糖微阵列形式共价印刷在功能化的载玻片上。虽然对于探索与许多类型样品的结合相互作用非常有用,但常用的技术包括干燥载玻片,这会导致蛋白质与载玻片上它们结合的点不可逆关联,从而限制了微阵列的单一用途。我们开发了一种新的技术,我们称之为微波辅助湿擦(MAWE)聚糖微阵列。在这种方法中,我们在潮湿条件下对载玻片成像以获取数据,之后用变性SDS溶液和微波处理清洗载玻片上的结合蛋白。以这种方式清理的幻灯片可以重复使用多次,这里的示例显示了对单个数组的重复使用15次。我们还证明了这种方法可以用于每张幻灯片的单阵列或每张幻灯片的多阵列平台。重要的是,使用该技术获得的各种凝集素顺序应用于单个阵列的结果与通过经典干燥方法在多个载玻片上获得的结果一致。我们还证明MAWE可以用于不同类型的样品,例如用于抗体结合的血清,以及整个细胞,例如酵母。这项技术将极大地保存宝贵的聚糖,并延长现有和新的聚糖微阵列的使用时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Glycobiology
Glycobiology 生物-生化与分子生物学
CiteScore
7.50
自引率
4.70%
发文量
73
审稿时长
3 months
期刊介绍: Established as the leading journal in the field, Glycobiology provides a unique forum dedicated to research into the biological functions of glycans, including glycoproteins, glycolipids, proteoglycans and free oligosaccharides, and on proteins that specifically interact with glycans (including lectins, glycosyltransferases, and glycosidases). Glycobiology is essential reading for researchers in biomedicine, basic science, and the biotechnology industries. By providing a single forum, the journal aims to improve communication between glycobiologists working in different disciplines and to increase the overall visibility of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信