Jianpeng Zhang, Yi Wang, Ying Lu, Weiwei You, Xuan Luo, Caihuan Ke
{"title":"Comparative Cytogenetic Analysis of Diploid and Triploid Pacific Abalone, Haliotis discus hannai.","authors":"Jianpeng Zhang, Yi Wang, Ying Lu, Weiwei You, Xuan Luo, Caihuan Ke","doi":"10.1159/000535045","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The Pacific abalone, Haliotis discus hannai, is one of the most commercially important marine shellfish in China. Cell engineering breeding is an important tool in abalone genetic breeding, and the triploids obtained through this method have high commercial value. However, current research mainly focuses on establishing induction methods and evaluating the growth traits of triploids, while there is a lack of basic research on triploid cytogenetics.</p><p><strong>Method: </strong>In this study, Cytogenetic analysis of triploid Haliotis discus hannai larvae (produced by chemical treatment) and diploid larvae was performed.</p><p><strong>Result: </strong>The results showed that triploid H. discus hannai had a chromosome number of 3n = 54, consisting of 30 metacentric (m) and 24 submetacentric (sm) chromosomes, while the diploids had a chromosome number of 2n = 36, consisting of 20 metacentric (m) and 16 submetacentric (sm) chromosomes. Notably, both triploids and diploids displayed variation in the number of NORs and/or their diameter. The average number of NORs in triploid was significantly higher than that in diploids (p < 0.05), but the average diameter of NORs of triploid was no significant different from that of diploid (p > 0.05). Additionally, 5S rDNA localization to 3 submetacentric chromosomes was observed in triploids, compared to 2 submetacentric chromosomes in diploids. The number of 18S rDNA sites displayed positional conservancy and quantitative variability in both diploids and triploids. Specifically, 18S rDNA was found at the end of the chromosome in both groups, with triploids exhibiting a significantly higher number of loci than diploids (p < 0.01).</p><p><strong>Conclusion: </strong>This study provides valuable insights into the cytogenetic characteristics of triploid H. discus hannai, which could facilitate further research on the stability of the chromosome set in this species.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetic and Genome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000535045","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The Pacific abalone, Haliotis discus hannai, is one of the most commercially important marine shellfish in China. Cell engineering breeding is an important tool in abalone genetic breeding, and the triploids obtained through this method have high commercial value. However, current research mainly focuses on establishing induction methods and evaluating the growth traits of triploids, while there is a lack of basic research on triploid cytogenetics.
Method: In this study, Cytogenetic analysis of triploid Haliotis discus hannai larvae (produced by chemical treatment) and diploid larvae was performed.
Result: The results showed that triploid H. discus hannai had a chromosome number of 3n = 54, consisting of 30 metacentric (m) and 24 submetacentric (sm) chromosomes, while the diploids had a chromosome number of 2n = 36, consisting of 20 metacentric (m) and 16 submetacentric (sm) chromosomes. Notably, both triploids and diploids displayed variation in the number of NORs and/or their diameter. The average number of NORs in triploid was significantly higher than that in diploids (p < 0.05), but the average diameter of NORs of triploid was no significant different from that of diploid (p > 0.05). Additionally, 5S rDNA localization to 3 submetacentric chromosomes was observed in triploids, compared to 2 submetacentric chromosomes in diploids. The number of 18S rDNA sites displayed positional conservancy and quantitative variability in both diploids and triploids. Specifically, 18S rDNA was found at the end of the chromosome in both groups, with triploids exhibiting a significantly higher number of loci than diploids (p < 0.01).
Conclusion: This study provides valuable insights into the cytogenetic characteristics of triploid H. discus hannai, which could facilitate further research on the stability of the chromosome set in this species.
期刊介绍:
During the last decades, ''Cytogenetic and Genome Research'' has been the leading forum for original reports and reviews in human and animal cytogenetics, including molecular, clinical and comparative cytogenetics. In recent years, most of its papers have centered on genome research, including gene cloning and sequencing, gene mapping, gene regulation and expression, cancer genetics, comparative genetics, gene linkage and related areas. The journal also publishes key papers on chromosome aberrations in somatic, meiotic and malignant cells. Its scope has expanded to include studies on invertebrate and plant cytogenetics and genomics. Also featured are the vast majority of the reports of the International Workshops on Human Chromosome Mapping, the reports of international human and animal chromosome nomenclature committees, and proceedings of the American and European cytogenetic conferences and other events. In addition to regular issues, the journal has been publishing since 2002 a series of topical issues on a broad variety of themes from cytogenetic and genome research.