Herbalism and glass-based materials in dentistry: review of the current state of the art

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Lamia Singer, Christoph Bourauel
{"title":"Herbalism and glass-based materials in dentistry: review of the current state of the art","authors":"Lamia Singer,&nbsp;Christoph Bourauel","doi":"10.1007/s10856-023-06764-w","DOIUrl":null,"url":null,"abstract":"<div><p>Half a million different plant species are occurring worldwide, of which only 1% has been phytochemically considered. Thus, there is great potential for discovering novel bioactive compounds. In dentistry, herbal extracts have been used as antimicrobial agents, analgesics, and intracanal medicaments. Glass-ionomer cement (GIC) and bioactive glass (BAG) are attractive materials in dentistry due to their bioactivity, adhesion, and remineralisation capabilities. Thus, this review summarizes the evidence around the use of phytotherapeutics in dental glass-based materials. This review article covers the structure, properties, and clinical uses of GIC and BAG materials within dentistry, with an emphasis on all the attempts that have been made in the last 20 years to enhance their properties naturally using the wisdom of traditional medicines. An extensive electronic search was performed across four databases to include published articles in the last 20 years and the search was concerned only with the English language publications. Publications that involved the use of plant extracts, and their active compounds for the green synthesis of nanoparticles and the modification of GIC and BAG were included up to May 2023. Plant extracts are a potential and effective candidate for modification of different properties of GIC and BAG, particularly their antimicrobial activities. Moreover, natural plant extracts have shown to be very effective in the green synthesis of metal ion nanoparticles in an ecological, and easy way with the additional advantage of a synergistic effect between metal ions and the phytotherapeutic agents. Medicinal plants are considered an abundant, cheap source of biologically active compounds and many of these phytotherapeutics have been the base for the development of new lead pharmaceuticals. Further research is required to assess the safety and the importance of regulation of phytotherapeutics to expand their use in medicine.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"34 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645656/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-023-06764-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Half a million different plant species are occurring worldwide, of which only 1% has been phytochemically considered. Thus, there is great potential for discovering novel bioactive compounds. In dentistry, herbal extracts have been used as antimicrobial agents, analgesics, and intracanal medicaments. Glass-ionomer cement (GIC) and bioactive glass (BAG) are attractive materials in dentistry due to their bioactivity, adhesion, and remineralisation capabilities. Thus, this review summarizes the evidence around the use of phytotherapeutics in dental glass-based materials. This review article covers the structure, properties, and clinical uses of GIC and BAG materials within dentistry, with an emphasis on all the attempts that have been made in the last 20 years to enhance their properties naturally using the wisdom of traditional medicines. An extensive electronic search was performed across four databases to include published articles in the last 20 years and the search was concerned only with the English language publications. Publications that involved the use of plant extracts, and their active compounds for the green synthesis of nanoparticles and the modification of GIC and BAG were included up to May 2023. Plant extracts are a potential and effective candidate for modification of different properties of GIC and BAG, particularly their antimicrobial activities. Moreover, natural plant extracts have shown to be very effective in the green synthesis of metal ion nanoparticles in an ecological, and easy way with the additional advantage of a synergistic effect between metal ions and the phytotherapeutic agents. Medicinal plants are considered an abundant, cheap source of biologically active compounds and many of these phytotherapeutics have been the base for the development of new lead pharmaceuticals. Further research is required to assess the safety and the importance of regulation of phytotherapeutics to expand their use in medicine.

Graphical Abstract

Abstract Image

牙科中的草药学和玻璃基材料:对当前技术状况的回顾。
全世界有50万种不同的植物物种,其中只有1%被植物化学研究过。因此,发现新的生物活性化合物具有很大的潜力。在牙科中,草药提取物已被用作抗菌剂、镇痛药和肛管内药物。玻璃离子水泥(GIC)和生物活性玻璃(BAG)因其生物活性、粘附性和再矿化能力而成为牙科领域有吸引力的材料。因此,本文综述了植物疗法在牙科玻璃基材料中的应用。这篇综述文章涵盖了GIC和BAG材料在牙科中的结构、性能和临床应用,重点介绍了在过去20年里利用传统医学的智慧自然增强其性能的所有尝试。在四个数据库中进行了广泛的电子检索,以包括过去20年发表的文章,检索只涉及英文出版物。截至2023年5月,涉及使用植物提取物及其活性化合物进行纳米颗粒绿色合成和GIC和BAG改性的出版物被收录。植物提取物是一种潜在的、有效的修饰GIC和BAG不同性质的候选物质,特别是它们的抗菌活性。此外,天然植物提取物在金属离子与植物治疗剂之间的协同作用下,以生态、简便的方式绿色合成金属离子纳米粒子是非常有效的。药用植物被认为是丰富、廉价的生物活性化合物来源,其中许多植物疗法已成为开发新型先导药物的基础。需要进一步的研究来评估植物疗法的安全性和监管的重要性,以扩大其在医学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信