{"title":"MRIM: Lightweight saliency-based mixed-resolution imaging for low-power pervasive vision","authors":"Ji-Yan Wu, Vithurson Subasharan, Tuan Tran, Kasun Gamlath, Archan Misra","doi":"10.1016/j.pmcj.2023.101858","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>While many pervasive computing applications increasingly utilize real-time context extracted from a vision sensing infrastructure, the high energy overhead of DNN-based vision sensing pipelines remains a challenge for sustainable in-the-wild deployment. One common approach to reducing such energy overheads is the capture and transmission of lower-resolution images to an edge node (where the </span>DNN inferencing task is executed), but this results in an accuracy-vs-energy tradeoff, as the DNN inference accuracy typically degrades with a drop in resolution. In this work, we introduce </span><em>MRIM</em>, a simple but effective framework to tackle this tradeoff. Under <em>MRIM</em><span>, the vision sensor platform first executes a lightweight preprocessing step to determine the saliency of different sub-regions within a single captured image frame, and then performs a saliency-aware non-uniform downscaling of individual sub-regions to produce a “mixed-resolution” image. We describe two novel low-complexity algorithms that the sensor platform can use to quickly compute suitable resolution choices for different regions under different energy/accuracy constraints. Experimental studies, involving object detection tasks evaluated traces from two benchmark urban monitoring datasets as well as a prototype Raspberry Pi-based </span><em>MRIM</em> implementation, demonstrate <em>MRIM’s</em> efficacy: even with an unoptimized embedded platform, <em>MRIM</em><span> can provide system energy conservation of </span><span><math><mrow><mn>35</mn><mo>+</mo><mtext>%</mtext></mrow></math></span> (<span><math><mo>∼</mo></math></span>80% in high accuracy regimes) or increase task accuracy by <span><math><mrow><mn>8</mn><mo>+</mo><mtext>%</mtext></mrow></math></span><span>, over conventional baselines of uniform resolution downscaling or image encoding, while supporting high throughput. On a low power ESP32 vision board, </span><em>MRIM</em><span> continues to provide 60+% energy savings over uniform downscaling while maintaining high detection accuracy. We further introduce an automated data-driven technique for determining a close-to-optimal number of </span><em>MRIM</em> sub-regions (for differential resolution adjustment), across different deployment conditions. We also show the generalized use of <em>MRIM</em><span> by considering an additional license plate recognition (LPR) task: while alternative approaches suffer 35%–40% loss in accuracy, </span><em>MRIM</em> suffers only a modest recognition loss of <span><math><mo>∼</mo></math></span>10% even when the transmission data is reduced by over 50%.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119223001165","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
While many pervasive computing applications increasingly utilize real-time context extracted from a vision sensing infrastructure, the high energy overhead of DNN-based vision sensing pipelines remains a challenge for sustainable in-the-wild deployment. One common approach to reducing such energy overheads is the capture and transmission of lower-resolution images to an edge node (where the DNN inferencing task is executed), but this results in an accuracy-vs-energy tradeoff, as the DNN inference accuracy typically degrades with a drop in resolution. In this work, we introduce MRIM, a simple but effective framework to tackle this tradeoff. Under MRIM, the vision sensor platform first executes a lightweight preprocessing step to determine the saliency of different sub-regions within a single captured image frame, and then performs a saliency-aware non-uniform downscaling of individual sub-regions to produce a “mixed-resolution” image. We describe two novel low-complexity algorithms that the sensor platform can use to quickly compute suitable resolution choices for different regions under different energy/accuracy constraints. Experimental studies, involving object detection tasks evaluated traces from two benchmark urban monitoring datasets as well as a prototype Raspberry Pi-based MRIM implementation, demonstrate MRIM’s efficacy: even with an unoptimized embedded platform, MRIM can provide system energy conservation of (80% in high accuracy regimes) or increase task accuracy by , over conventional baselines of uniform resolution downscaling or image encoding, while supporting high throughput. On a low power ESP32 vision board, MRIM continues to provide 60+% energy savings over uniform downscaling while maintaining high detection accuracy. We further introduce an automated data-driven technique for determining a close-to-optimal number of MRIM sub-regions (for differential resolution adjustment), across different deployment conditions. We also show the generalized use of MRIM by considering an additional license plate recognition (LPR) task: while alternative approaches suffer 35%–40% loss in accuracy, MRIM suffers only a modest recognition loss of 10% even when the transmission data is reduced by over 50%.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.