Yi Ren , Benjamin C. Jean , Woo Jin Jang , Akriti Sarswat , Young Joo Lee , Emily K. McGuinness , Kshitij Dhavala , Mark D. Losego , Ryan P. Lively
{"title":"Engineering organic solvent reverse osmosis in hybrid AlOxHy / polymer of intrinsic microporosity 1 (PIM-1) membranes using vapor phase infiltration","authors":"Yi Ren , Benjamin C. Jean , Woo Jin Jang , Akriti Sarswat , Young Joo Lee , Emily K. McGuinness , Kshitij Dhavala , Mark D. Losego , Ryan P. Lively","doi":"10.1016/j.memlet.2023.100064","DOIUrl":null,"url":null,"abstract":"<div><p>A solvent-free post-treatment process known as vapor phase infiltration (VPI) is used to engineer the organic solvent reverse osmosis (OSRO) performance of polymer of intrinsic microporosity 1 (PIM-1) membranes via infiltration of trimethylaluminum (TMA) metal-organic vapor. The infiltration of inorganic aluminum constituents hybridizes the pure polymer PIM-1 into an organic-inorganic material (AlO<sub>x</sub>H<sub>y</sub>/PIM-1) with enhanced chemical stability. A homogenous distribution of inorganic loading in PIM-1 is achieved due to the reaction-limited infiltration mechanism, and the OSRO performance is enhanced as a result. OSRO separations of ethanol/isooctane mixtures using these membranes are shown to be capable of breaking the azeotropic composition with a separation factor for ethanol over isooctane greater than 5 and an ethanol permeance of 0.1 <em>Lm<sup>–2</sup>h<sup>–1</sup>bar</em><sup>–1</sup>. Thus, these organic-inorganic hybrid membranes created via VPI show promise as an alternative method for separating azeotropic liquid mixtures.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421223000284/pdfft?md5=4d4422eeb6acb25bb572afab669923ad&pid=1-s2.0-S2772421223000284-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421223000284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A solvent-free post-treatment process known as vapor phase infiltration (VPI) is used to engineer the organic solvent reverse osmosis (OSRO) performance of polymer of intrinsic microporosity 1 (PIM-1) membranes via infiltration of trimethylaluminum (TMA) metal-organic vapor. The infiltration of inorganic aluminum constituents hybridizes the pure polymer PIM-1 into an organic-inorganic material (AlOxHy/PIM-1) with enhanced chemical stability. A homogenous distribution of inorganic loading in PIM-1 is achieved due to the reaction-limited infiltration mechanism, and the OSRO performance is enhanced as a result. OSRO separations of ethanol/isooctane mixtures using these membranes are shown to be capable of breaking the azeotropic composition with a separation factor for ethanol over isooctane greater than 5 and an ethanol permeance of 0.1 Lm–2h–1bar–1. Thus, these organic-inorganic hybrid membranes created via VPI show promise as an alternative method for separating azeotropic liquid mixtures.