Internal ratings and bank opacity: Evidence from analysts’ forecasts

IF 3.1 1区 经济学 Q2 BUSINESS, FINANCE
Brunella Bruno , Immacolata Marino , Giacomo Nocera
{"title":"Internal ratings and bank opacity: Evidence from analysts’ forecasts","authors":"Brunella Bruno ,&nbsp;Immacolata Marino ,&nbsp;Giacomo Nocera","doi":"10.1016/j.jfi.2023.101062","DOIUrl":null,"url":null,"abstract":"<div><p>We document that reliance on internal ratings-based (IRB) models to compute credit risk and capital requirements reduces bank opacity. Greater reliance on IRB models is associated with lower absolute forecast error and reduced disagreement among analysts regarding expected bank earnings per share. These results are stronger for banks that apply internal ratings to the most opaque loans and adopt the advanced version of IRB models, which entail a more granular risk assessment and greater disclosure of risk parameters. The results stem from the higher earnings informativeness and the more comprehensive disclosure of credit risk in banks adopting internal ratings. We employ an instrumental variables approach to validate our findings.</p></div>","PeriodicalId":51421,"journal":{"name":"Journal of Financial Intermediation","volume":"56 ","pages":"Article 101062"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1042957323000451/pdfft?md5=6c0f474c8d634eb7273f7eab82aa10d3&pid=1-s2.0-S1042957323000451-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Intermediation","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1042957323000451","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We document that reliance on internal ratings-based (IRB) models to compute credit risk and capital requirements reduces bank opacity. Greater reliance on IRB models is associated with lower absolute forecast error and reduced disagreement among analysts regarding expected bank earnings per share. These results are stronger for banks that apply internal ratings to the most opaque loans and adopt the advanced version of IRB models, which entail a more granular risk assessment and greater disclosure of risk parameters. The results stem from the higher earnings informativeness and the more comprehensive disclosure of credit risk in banks adopting internal ratings. We employ an instrumental variables approach to validate our findings.

内部评级和银行不透明:来自分析师预测的证据
我们证明,依赖内部评级(IRB)模型来计算信用风险和资本要求降低了银行的不透明度。对IRB模型的更大依赖与更低的绝对预测误差和分析师对预期银行每股收益的分歧减少有关。对于那些对最不透明的贷款采用内部评级并采用高级版本的IRB模型的银行来说,这些结果更为明显,后者需要更细致的风险评估和更多的风险参数披露。这一结果源于采用内部评级的银行具有更高的盈余信息量和更全面的信用风险披露。我们采用工具变量方法来验证我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
7.70%
发文量
45
期刊介绍: The Journal of Financial Intermediation seeks to publish research in the broad areas of financial intermediation, financial market structure, corporate finance, risk management, and valuation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信