A review of the application of machine learning in water quality evaluation

Mengyuan Zhu, Jiawei Wang, Xiao Yang, Yu Zhang, Linyu Zhang, Hongqiang Ren, Bing Wu, Lin Ye
{"title":"A review of the application of machine learning in water quality evaluation","authors":"Mengyuan Zhu,&nbsp;Jiawei Wang,&nbsp;Xiao Yang,&nbsp;Yu Zhang,&nbsp;Linyu Zhang,&nbsp;Hongqiang Ren,&nbsp;Bing Wu,&nbsp;Lin Ye","doi":"10.1016/j.eehl.2022.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid increase in the volume of data on the aquatic environment, machine learning has become an important tool for data analysis, classification, and prediction. Unlike traditional models used in water-related research, data-driven models based on machine learning can efficiently solve more complex nonlinear problems. In water environment research, models and conclusions derived from machine learning have been applied to the construction, monitoring, simulation, evaluation, and optimization of various water treatment and management systems. Additionally, machine learning can provide solutions for water pollution control, water quality improvement, and watershed ecosystem security management. In this review, we describe the cases in which machine learning algorithms have been applied to evaluate the water quality in different water environments, such as surface water, groundwater, drinking water, sewage, and seawater. Furthermore, we propose possible future applications of machine learning approaches to water environments.</p></div>","PeriodicalId":29813,"journal":{"name":"Eco-Environment & Health","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772985022000163/pdfft?md5=00049226b8e6baf7f6825a2e9723192a&pid=1-s2.0-S2772985022000163-main.pdf","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eco-Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772985022000163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

With the rapid increase in the volume of data on the aquatic environment, machine learning has become an important tool for data analysis, classification, and prediction. Unlike traditional models used in water-related research, data-driven models based on machine learning can efficiently solve more complex nonlinear problems. In water environment research, models and conclusions derived from machine learning have been applied to the construction, monitoring, simulation, evaluation, and optimization of various water treatment and management systems. Additionally, machine learning can provide solutions for water pollution control, water quality improvement, and watershed ecosystem security management. In this review, we describe the cases in which machine learning algorithms have been applied to evaluate the water quality in different water environments, such as surface water, groundwater, drinking water, sewage, and seawater. Furthermore, we propose possible future applications of machine learning approaches to water environments.

Abstract Image

机器学习在水质评价中的应用综述
随着水生环境数据量的快速增加,机器学习已经成为数据分析、分类和预测的重要工具。与水相关研究中使用的传统模型不同,基于机器学习的数据驱动模型可以有效地解决更复杂的非线性问题。在水环境研究中,机器学习得出的模型和结论已被应用于各种水处理和管理系统的建设、监测、模拟、评估和优化。此外,机器学习还可以为水污染控制、水质改善和流域生态系统安全管理提供解决方案。在这篇综述中,我们描述了机器学习算法被应用于评估不同水环境(如地表水、地下水、饮用水、污水和海水)中的水质的案例。此外,我们提出了未来机器学习方法在水环境中的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Eco-Environment & Health
Eco-Environment & Health 环境科学与生态学-生态、环境与健康
CiteScore
11.00
自引率
0.00%
发文量
18
审稿时长
22 days
期刊介绍: Eco-Environment & Health (EEH) is an international and multidisciplinary peer-reviewed journal designed for publications on the frontiers of the ecology, environment and health as well as their related disciplines. EEH focuses on the concept of “One Health” to promote green and sustainable development, dealing with the interactions among ecology, environment and health, and the underlying mechanisms and interventions. Our mission is to be one of the most important flagship journals in the field of environmental health. Scopes EEH covers a variety of research areas, including but not limited to ecology and biodiversity conservation, environmental behaviors and bioprocesses of emerging contaminants, human exposure and health effects, and evaluation, management and regulation of environmental risks. The key topics of EEH include: 1) Ecology and Biodiversity Conservation Biodiversity Ecological restoration Ecological safety Protected area 2) Environmental and Biological Fate of Emerging Contaminants Environmental behaviors Environmental processes Environmental microbiology 3) Human Exposure and Health Effects Environmental toxicology Environmental epidemiology Environmental health risk Food safety 4) Evaluation, Management and Regulation of Environmental Risks Chemical safety Environmental policy Health policy Health economics Environmental remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信