{"title":"Does dexamethasone inhibit glucose oxidase: an analysis in kinetics and molecular study.","authors":"Edris Majd, Dariush Minai-Tehrani, Hamidreza Mollasalehi","doi":"10.1515/hmbci-2022-0030","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Glucose oxidase is an enzyme that is widely used in biosensors, especially kits for measuring blood sugar. Many diabetics use this type of kit to determine their blood sugar level. Aspergillus niger is the most important source of glucose oxidase for use in biosensors. Diabetes causes secondary diseases in patients for which medications are prescribed to improve them. Dexamethasone, a corticosteroid, is one of the drugs prescribed to diabetics to cure some secondary diseases. In this study, the effect of this drug on glucose oxidase was investigated from a kinetic and molecular point of view.</p><p><strong>Methods: </strong>In this study, the kinetics of drug binding to the enzyme was measured and the type of inhibition was determined by Lineweaver-Burk plot. The Ki value of the drug was determined by drawing the secondary curve. Using fluorescence spectrophotometry and molecular docking, the binding of the drug to the enzyme was confirmed.</p><p><strong>Results: </strong>The results showed that the drug inhibits the enzyme non-competitively. Determining the kinetics parameters of the drug-enzyme interaction showed that the drug acts as a potent inhibitor. Study at the molecular level by fluorescence spectrophotometer showed that the drug attachment alters the enzyme conformation to more compaction. In silico results showed that the drug is placed between two helices that are outside the active site and binds to the enzyme by three hydrogen bonds.</p><p><strong>Conclusions: </strong>The result of this study is useful because it suggests that in diabetic patients taking dexamethasone, the amount of glucose declared by the kit may not be real due to the inhibition of glucose oxidase.</p>","PeriodicalId":13224,"journal":{"name":"Hormone Molecular Biology and Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormone Molecular Biology and Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/hmbci-2022-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Glucose oxidase is an enzyme that is widely used in biosensors, especially kits for measuring blood sugar. Many diabetics use this type of kit to determine their blood sugar level. Aspergillus niger is the most important source of glucose oxidase for use in biosensors. Diabetes causes secondary diseases in patients for which medications are prescribed to improve them. Dexamethasone, a corticosteroid, is one of the drugs prescribed to diabetics to cure some secondary diseases. In this study, the effect of this drug on glucose oxidase was investigated from a kinetic and molecular point of view.
Methods: In this study, the kinetics of drug binding to the enzyme was measured and the type of inhibition was determined by Lineweaver-Burk plot. The Ki value of the drug was determined by drawing the secondary curve. Using fluorescence spectrophotometry and molecular docking, the binding of the drug to the enzyme was confirmed.
Results: The results showed that the drug inhibits the enzyme non-competitively. Determining the kinetics parameters of the drug-enzyme interaction showed that the drug acts as a potent inhibitor. Study at the molecular level by fluorescence spectrophotometer showed that the drug attachment alters the enzyme conformation to more compaction. In silico results showed that the drug is placed between two helices that are outside the active site and binds to the enzyme by three hydrogen bonds.
Conclusions: The result of this study is useful because it suggests that in diabetic patients taking dexamethasone, the amount of glucose declared by the kit may not be real due to the inhibition of glucose oxidase.
期刊介绍:
Hormone Molecular Biology and Clinical Investigation (HMBCI) is dedicated to the provision of basic data on molecular aspects of hormones in physiology and pathophysiology. The journal covers the treatment of major diseases, such as endocrine cancers (breast, prostate, endometrium, ovary), renal and lymphoid carcinoma, hypertension, cardiovascular systems, osteoporosis, hormone deficiency in menopause and andropause, obesity, diabetes, brain and related diseases, metabolic syndrome, sexual dysfunction, fetal and pregnancy diseases, as well as the treatment of dysfunctions and deficiencies. HMBCI covers new data on the different steps and factors involved in the mechanism of hormone action. It will equally examine the relation of hormones with the immune system and its environment, as well as new developments in hormone measurements. HMBCI is a blind peer reviewed journal and publishes in English: Original articles, Reviews, Mini Reviews, Short Communications, Case Reports, Letters to the Editor and Opinion papers. Ahead-of-print publishing ensures faster processing of fully proof-read, DOI-citable articles.