Predictive process mapping for laser powder bed fusion: A review of existing analytical solutions

IF 12.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ankur K. Agrawal , Behzad Rankouhi , Dan J. Thoma
{"title":"Predictive process mapping for laser powder bed fusion: A review of existing analytical solutions","authors":"Ankur K. Agrawal ,&nbsp;Behzad Rankouhi ,&nbsp;Dan J. Thoma","doi":"10.1016/j.cossms.2022.101024","DOIUrl":null,"url":null,"abstract":"<div><p>One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 6","pages":"Article 101024"},"PeriodicalIF":12.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028622000444","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

Abstract

One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.

激光粉末床熔合的预测过程映射:现有分析解决方案的回顾
激光粉末床熔融(LPBF)工艺的主要挑战之一是制造致密和无缺陷的部件。这些气孔缺陷取决于熔池的几何形状和加工条件。功率-速度(PV)加工图可以帮助可视化LPBF加工变量的影响,并绘制不同的缺陷机制,如未熔化、未熔化、成球和锁孔。这项工作提出了现有的分析方程和模型的评估,这些方程和模型提供了熔池几何形状作为材料特性函数的估计。然后将熔池方程与缺陷标准相结合,以提供各种材料的PV加工图的快速近似值。最后,将这些加工图的预测结果与文献中的实验数据进行了比较。预测处理图可以快速计算,并且可以与无因次数和高通量(HT)实验相结合进行验证。本工作为基于现有解析解设计新金属和合金的最佳加工参数提供了一个边界框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Solid State & Materials Science
Current Opinion in Solid State & Materials Science 工程技术-材料科学:综合
CiteScore
21.10
自引率
3.60%
发文量
41
审稿时长
47 days
期刊介绍: Title: Current Opinion in Solid State & Materials Science Journal Overview: Aims to provide a snapshot of the latest research and advances in materials science Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research Promotes cross-fertilization of ideas across an increasingly interdisciplinary field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信