{"title":"Knowledge-based problem solving in physical product development––A methodological review","authors":"Peter Burggräf, Johannes Wagner, Tim Weißer","doi":"10.1016/j.eswax.2020.100025","DOIUrl":null,"url":null,"abstract":"<div><p>The manufacturing of products at low maturity levels (referred to as physical product development) requires knowledge intensive nonconformance problem solving, yet constituting a major difficulty in industry. Due to the exponential increase of failure cost during the product development process however, problems have to be effectively remedied as early as possible. Facing shortened innovation cycles, problem solving efficiency simultaneously constitutes a competitive factor. The purpose of this theoretical review is therefore the analysis of relevant approaches contributing to knowledge-based problem solving in physical product development, to synthesize a comprehensive construct as well as to derive novel conceptualizations. The latter demonstrably emerges from natural language processing, case ontologies and machine-/deep learning support, embedded in a distributed case-based reasoning architecture. Building on this, we likewise encourage researchers and professionals to propose new studies dedicated to the field of problem solving in physical product development.</p></div>","PeriodicalId":36838,"journal":{"name":"Expert Systems with Applications: X","volume":"5 ","pages":"Article 100025"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.eswax.2020.100025","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590188520300044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 13
Abstract
The manufacturing of products at low maturity levels (referred to as physical product development) requires knowledge intensive nonconformance problem solving, yet constituting a major difficulty in industry. Due to the exponential increase of failure cost during the product development process however, problems have to be effectively remedied as early as possible. Facing shortened innovation cycles, problem solving efficiency simultaneously constitutes a competitive factor. The purpose of this theoretical review is therefore the analysis of relevant approaches contributing to knowledge-based problem solving in physical product development, to synthesize a comprehensive construct as well as to derive novel conceptualizations. The latter demonstrably emerges from natural language processing, case ontologies and machine-/deep learning support, embedded in a distributed case-based reasoning architecture. Building on this, we likewise encourage researchers and professionals to propose new studies dedicated to the field of problem solving in physical product development.