Yuan Zhong , YaMei Wang , YuFei Ji , Xiaotao Zhang , Ximing Wang
{"title":"Biomass carbon-based composites for adsorption/photocatalysis degradation of VOCs: A comprehensive review","authors":"Yuan Zhong , YaMei Wang , YuFei Ji , Xiaotao Zhang , Ximing Wang","doi":"10.1016/j.colcom.2023.100749","DOIUrl":null,"url":null,"abstract":"<div><p>Driven by the dual‑carbon target strategy, the governance of volatile organic compounds (VOCs) is imminent. Traditional activated carbon adsorption is not conducive to the complete removal of VOCs, which undoubtedly increases the follow-up cost. Therefore, photocatalytic technology has gradually been used on biomass carbon-based supports with its high efficiency and environmental protection, while has achieved considerable results. Nevertheless, we still face difficult catalyst selection and unclear catalytic reaction mechanisms. So, a deeper understanding of biomass carbon-based photocatalysts is required. We review the types, structures, and adsorption-catalytic effects of biomass carbon-based supports. Meanwhile, we briefly describe the removal of VOCs by metal catalysis, non-metal catalysis, and single-atom catalysis in the research of biomass carbon-based catalysts, and briefly describe the density functional Application of theory to VOCs adsorption-catalysis. Finally, we prospects and directions for the technological development of biomass carbon-based photocatalytic removal of VOCs are proposed.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038223000560/pdfft?md5=b4c593a82466a38204b0fc5a7a597bfd&pid=1-s2.0-S2215038223000560-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038223000560","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Driven by the dual‑carbon target strategy, the governance of volatile organic compounds (VOCs) is imminent. Traditional activated carbon adsorption is not conducive to the complete removal of VOCs, which undoubtedly increases the follow-up cost. Therefore, photocatalytic technology has gradually been used on biomass carbon-based supports with its high efficiency and environmental protection, while has achieved considerable results. Nevertheless, we still face difficult catalyst selection and unclear catalytic reaction mechanisms. So, a deeper understanding of biomass carbon-based photocatalysts is required. We review the types, structures, and adsorption-catalytic effects of biomass carbon-based supports. Meanwhile, we briefly describe the removal of VOCs by metal catalysis, non-metal catalysis, and single-atom catalysis in the research of biomass carbon-based catalysts, and briefly describe the density functional Application of theory to VOCs adsorption-catalysis. Finally, we prospects and directions for the technological development of biomass carbon-based photocatalytic removal of VOCs are proposed.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.