Martina Bonacini , Ilaria Ferrigno , Alessandro Rossi , Nicola Facciolongo , Marco Massari , Romina Corsini , Veronica Galli , Alessandro Zerbini , Carlo Salvarani , Stefania Croci
{"title":"Comparable cytokine release ex-vivo by whole blood from COVID-19 patients with and without non-invasive ventilation","authors":"Martina Bonacini , Ilaria Ferrigno , Alessandro Rossi , Nicola Facciolongo , Marco Massari , Romina Corsini , Veronica Galli , Alessandro Zerbini , Carlo Salvarani , Stefania Croci","doi":"10.1016/j.imbio.2023.152755","DOIUrl":null,"url":null,"abstract":"<div><p>T cells are key players in the resolution of the infection by SARS-CoV-2. A delay in their activation can lead to severe COVID-19. The present work aimed to identify differences in cytokine release by T cells <em>ex-vivo</em> between COVID-19 patients in the acute phase, showing diverse disease severity. Concentrations of IFNγ, Granzyme B, IL-6, IL-10, IL-17A, IL-18, IP-10, MCP-1, and TNFα were evaluated after stimulation <em>ex-vivo</em> of whole blood samples with peptides from SARS-CoV-2 spike protein and a mitogen as well as without stimulation. Samples derived from hospitalized COVID-19 patients and SARS-CoV-2 vaccinated controls (CTR). Patients were classified on disease severity considering the necessity of non-invasive ventilation (NIV). Samples from patients requiring NIV revealed a similar release of cytokines compared with patients without NIV. COVID-19 patients showed higher spontaneous production of IFNγ and IP-10, lower production of MCP-1 after SARS-CoV-2 peptide stimulation and lower production of IFNγ, IL-10, IL-17A, Granzyme B, IP-10 after mitogenic stimulus compared with CTR. In conclusion, differences in T cell responses evaluated <em>ex-vivo</em> by a whole blood-based cytokine release assay do not appear to explain the need for non-invasive ventilation in COVID-19 patients.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171298523045576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
T cells are key players in the resolution of the infection by SARS-CoV-2. A delay in their activation can lead to severe COVID-19. The present work aimed to identify differences in cytokine release by T cells ex-vivo between COVID-19 patients in the acute phase, showing diverse disease severity. Concentrations of IFNγ, Granzyme B, IL-6, IL-10, IL-17A, IL-18, IP-10, MCP-1, and TNFα were evaluated after stimulation ex-vivo of whole blood samples with peptides from SARS-CoV-2 spike protein and a mitogen as well as without stimulation. Samples derived from hospitalized COVID-19 patients and SARS-CoV-2 vaccinated controls (CTR). Patients were classified on disease severity considering the necessity of non-invasive ventilation (NIV). Samples from patients requiring NIV revealed a similar release of cytokines compared with patients without NIV. COVID-19 patients showed higher spontaneous production of IFNγ and IP-10, lower production of MCP-1 after SARS-CoV-2 peptide stimulation and lower production of IFNγ, IL-10, IL-17A, Granzyme B, IP-10 after mitogenic stimulus compared with CTR. In conclusion, differences in T cell responses evaluated ex-vivo by a whole blood-based cytokine release assay do not appear to explain the need for non-invasive ventilation in COVID-19 patients.