Brandi Brown , Cheryl Immethun , Adil Alsiyabi , Dianna Long , Mark Wilkins , Rajib Saha
{"title":"Heterologous phasin expression in Rhodopseudomonas palustris CGA009 for bioplastic production from lignocellulosic biomass","authors":"Brandi Brown , Cheryl Immethun , Adil Alsiyabi , Dianna Long , Mark Wilkins , Rajib Saha","doi":"10.1016/j.mec.2021.e00191","DOIUrl":null,"url":null,"abstract":"<div><p><em>Rhodopseudomonas palustris</em> CGA009 is a metabolically robust microbe that can utilize lignin breakdown products to produce polyhydroxyalkanoates (PHAs), biopolymers with the potential to replace conventional plastics. Our recent efforts suggest PHA granule formation is a limiting factor for maximum production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by <em>R. palustris.</em> The Phap1 phasin (<em>phaP1</em>) from the PHB-producing model bacterium <em>Cupriavidus necator</em> H16 was expressed in <em>R. palustris</em> with the aim of overproducing PHBV from the lignin breakdown product <em>p-</em>coumarate by fostering smaller and more abundant granules. Expression of <em>phaP1</em> yielded PHBV production from <em>R. palustris</em> aerobically (0.7 g/L), which does not occur in the wild-type strain, and led to a significantly higher PHBV titer than wild-type anaerobic production (0.41 g/L). The 3HV fractions were also significantly increased under both anaerobic and aerobic conditions, which boosts thermomechanical properties and potential for application. Thus, heterologous phasin expression in <em>R. palustris</em> provides flexibility for industrial processing and could foster compositional changes in copolymers with better thermomechanical properties compared to PHB alone.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030121000316/pdfft?md5=ff323c34605bef32932c28358858dc3e&pid=1-s2.0-S2214030121000316-main.pdf","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030121000316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 11
Abstract
Rhodopseudomonas palustris CGA009 is a metabolically robust microbe that can utilize lignin breakdown products to produce polyhydroxyalkanoates (PHAs), biopolymers with the potential to replace conventional plastics. Our recent efforts suggest PHA granule formation is a limiting factor for maximum production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by R. palustris. The Phap1 phasin (phaP1) from the PHB-producing model bacterium Cupriavidus necator H16 was expressed in R. palustris with the aim of overproducing PHBV from the lignin breakdown product p-coumarate by fostering smaller and more abundant granules. Expression of phaP1 yielded PHBV production from R. palustris aerobically (0.7 g/L), which does not occur in the wild-type strain, and led to a significantly higher PHBV titer than wild-type anaerobic production (0.41 g/L). The 3HV fractions were also significantly increased under both anaerobic and aerobic conditions, which boosts thermomechanical properties and potential for application. Thus, heterologous phasin expression in R. palustris provides flexibility for industrial processing and could foster compositional changes in copolymers with better thermomechanical properties compared to PHB alone.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.