Long Sheng , Yue Chen , Shuli Ning , Shengpeng Wang , Bin Lian , Zhongcheng Wei
{"title":"DA-HAR: Dual adversarial network for environment-independent WiFi human activity recognition","authors":"Long Sheng , Yue Chen , Shuli Ning , Shengpeng Wang , Bin Lian , Zhongcheng Wei","doi":"10.1016/j.pmcj.2023.101850","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>As the cornerstone of the development of emerging integrated sensing and communication, human activity recognition technology based on WiFi signals has been extensively studied. However, the existing activity sensing models will suffer serious </span>performance degradation<span><span> when applied to new scenarios due to the influence of environmental dynamics. To address this issue, we present an environment-independent activity recognition model named DA-HAR, which utilizes dual adversarial network. The framework exploits adversarial training among source domain classifiers and source–target domain </span>discriminators to extract environment-independent activity features. To improve the performance of the model, a pseudo-label prediction based approach is introduced to assign labels to the target domain samples that closely resemble the source domain samples, thus mitigating the distribution deviation of activity features between source domain and target domain. Experimental results show that our proposed model has better cross-domain recognition performance compared to state-of-the-art recognition systems, especially when the distribution of activity features in the source domain and the target domain is significantly different, the accuracy is improved by 6.96% </span></span><span><math><mo>∼</mo></math></span> 11.22%.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119223001086","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
As the cornerstone of the development of emerging integrated sensing and communication, human activity recognition technology based on WiFi signals has been extensively studied. However, the existing activity sensing models will suffer serious performance degradation when applied to new scenarios due to the influence of environmental dynamics. To address this issue, we present an environment-independent activity recognition model named DA-HAR, which utilizes dual adversarial network. The framework exploits adversarial training among source domain classifiers and source–target domain discriminators to extract environment-independent activity features. To improve the performance of the model, a pseudo-label prediction based approach is introduced to assign labels to the target domain samples that closely resemble the source domain samples, thus mitigating the distribution deviation of activity features between source domain and target domain. Experimental results show that our proposed model has better cross-domain recognition performance compared to state-of-the-art recognition systems, especially when the distribution of activity features in the source domain and the target domain is significantly different, the accuracy is improved by 6.96% 11.22%.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.