“Several birds with one stone” strategy of pH/thermoresponsive flame-retardant/photothermal bactericidal oil-absorbing material for recovering complex spilled oil
IF 11.2 1区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ya Chen , Jing Lin , Gaber A.M. Mersal , Jianliang Zuo , Jialin Li , Qiying Wang , Yuhong Feng , Jianwei Liu , Zili Liu , Bin Wang , Ben Bin Xu , Zhanhu Guo
{"title":"“Several birds with one stone” strategy of pH/thermoresponsive flame-retardant/photothermal bactericidal oil-absorbing material for recovering complex spilled oil","authors":"Ya Chen , Jing Lin , Gaber A.M. Mersal , Jianliang Zuo , Jialin Li , Qiying Wang , Yuhong Feng , Jianwei Liu , Zili Liu , Bin Wang , Ben Bin Xu , Zhanhu Guo","doi":"10.1016/j.jmst.2022.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Although many material designs or strategic methods have been proposed for treating oil spills and oily wastewater, the complex oily state, dealing with the harsh operating conditions of oil–water separation (such as the recovery of viscous spilled crude oil, bacteria-containing oily wastewater, and removal of spilled oil under fire), and the autorecycling of oil and absorption materials remain a great challenge. This work proposed an ingenious design strategy of “several birds with one stone” to prepare pH/thermoresponsive flame-retardant/photothermal bactericidal P-Fe<sub>3</sub>O<sub>4</sub><span>-polydopamine (PDA)@melamine–formaldehyde (MF) foams. This design makes the foams remarkably effective in the recovery of spilled viscous crude oil as well as in the separation of bacteria-containing oily emulsions, particularly for instant fire extinguishing by magnetically controlled oil absorption as well as for fire alarms. The photothermal effect and pH response induce a change in the surface wettability of the foams, facilitating excellent autoadsorption/desorption of the spilled oil. The photothermal bactericidal activity and fouling resistance of the foam are beneficial to the separation of bacteria-containing oily wastewater. Outstanding flame-retardant properties and maneuverable magnetic control enable the foam to rapidly recover the spilled oil in a large range of fires, extinguish fires instantly, and facilitate early fire warning. The proposed strategy is expected to inspire further research on treating oil spills under complex conditions.</span></p></div>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"128 ","pages":"Pages 82-97"},"PeriodicalIF":11.2000,"publicationDate":"2022-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100503022200411X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 32
Abstract
Although many material designs or strategic methods have been proposed for treating oil spills and oily wastewater, the complex oily state, dealing with the harsh operating conditions of oil–water separation (such as the recovery of viscous spilled crude oil, bacteria-containing oily wastewater, and removal of spilled oil under fire), and the autorecycling of oil and absorption materials remain a great challenge. This work proposed an ingenious design strategy of “several birds with one stone” to prepare pH/thermoresponsive flame-retardant/photothermal bactericidal P-Fe3O4-polydopamine (PDA)@melamine–formaldehyde (MF) foams. This design makes the foams remarkably effective in the recovery of spilled viscous crude oil as well as in the separation of bacteria-containing oily emulsions, particularly for instant fire extinguishing by magnetically controlled oil absorption as well as for fire alarms. The photothermal effect and pH response induce a change in the surface wettability of the foams, facilitating excellent autoadsorption/desorption of the spilled oil. The photothermal bactericidal activity and fouling resistance of the foam are beneficial to the separation of bacteria-containing oily wastewater. Outstanding flame-retardant properties and maneuverable magnetic control enable the foam to rapidly recover the spilled oil in a large range of fires, extinguish fires instantly, and facilitate early fire warning. The proposed strategy is expected to inspire further research on treating oil spills under complex conditions.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.