Deepika Sharma, Gregory R. Ziegler, Federico M. Harte
{"title":"Ethanol-mediated electrospinning of casein-only bead-free nanofibers","authors":"Deepika Sharma, Gregory R. Ziegler, Federico M. Harte","doi":"10.1016/j.foodhyd.2023.109503","DOIUrl":null,"url":null,"abstract":"<div><p>Fabrication of electrospun nanofibers by blending casein with electrospinnable polymers and/or additives is well reported. However, the electrospinnablility of pure casein has not been described due to the tendency of casein proteins to self-aggregate and form large colloidal structures. Here we analyze the influence of pH, ethanol content, ionic environment, and casein concentration on the solubility, solution viscosity, surface tension, and conductivity of casein-based spinning dopes. Further, the influence of casein dope characteristics on our ability to electrospin bead-free nanofibers was evaluated. A homogenous dispersion of casein was observed for mixtures with 20 wt % casein prepared using 60 % ethanol/water mixture at pH<sub>eth</sub> 10. A minimum number of bead defects (BN, 6 × 10<sup>−3</sup>/μm<sup>2</sup>) and bead area (BA, 8.7 × 10<sup>−2</sup>) with minimum average fiber diameter (FD, 424 nm) and porosity (52 %) were observed for casein fibers fabricated using dopes containing 2 wt % of tetrasodium pyrophosphate (TSPP) on a casein basis. Further, the viscosity dependence on casein concentration at constant relative TSPP content was like that expected for a polyelectrolyte, and bead-free nanofibers were obtained at a concentration ∼2.5 times the entanglement concentration (C<sub>e</sub>). Our results indicate that micellar dissociation is a necessary condition for the electrospinning of casein-only fibers free of beads and other polymers to fabricate novel biodegradable, and biocompatible, casein-based nanostructured mats, with the potential for food, cosmetic, packaging, and biomedical applications.</p></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"148 ","pages":"Article 109503"},"PeriodicalIF":11.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X23010494","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Fabrication of electrospun nanofibers by blending casein with electrospinnable polymers and/or additives is well reported. However, the electrospinnablility of pure casein has not been described due to the tendency of casein proteins to self-aggregate and form large colloidal structures. Here we analyze the influence of pH, ethanol content, ionic environment, and casein concentration on the solubility, solution viscosity, surface tension, and conductivity of casein-based spinning dopes. Further, the influence of casein dope characteristics on our ability to electrospin bead-free nanofibers was evaluated. A homogenous dispersion of casein was observed for mixtures with 20 wt % casein prepared using 60 % ethanol/water mixture at pHeth 10. A minimum number of bead defects (BN, 6 × 10−3/μm2) and bead area (BA, 8.7 × 10−2) with minimum average fiber diameter (FD, 424 nm) and porosity (52 %) were observed for casein fibers fabricated using dopes containing 2 wt % of tetrasodium pyrophosphate (TSPP) on a casein basis. Further, the viscosity dependence on casein concentration at constant relative TSPP content was like that expected for a polyelectrolyte, and bead-free nanofibers were obtained at a concentration ∼2.5 times the entanglement concentration (Ce). Our results indicate that micellar dissociation is a necessary condition for the electrospinning of casein-only fibers free of beads and other polymers to fabricate novel biodegradable, and biocompatible, casein-based nanostructured mats, with the potential for food, cosmetic, packaging, and biomedical applications.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.