{"title":"p-adic Fourier transforms","authors":"G.F. Borm","doi":"10.1016/1385-7258(88)90001-7","DOIUrl":null,"url":null,"abstract":"<div><p>In [3]-[7] Woodcock developed a Fourier theory for continuously differentiable functions defined on the set of p-adic integers. In this paper his theory is continued by giving a characterization of the image of the Fourier transformation. Also a special form of continuity of the inverse Fourier transformation is proved and, as an application, the Fourier transform of an antiderivative of a function is calculated.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 1","pages":"Pages 1-8"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1385-7258(88)90001-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/1385725888900017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In [3]-[7] Woodcock developed a Fourier theory for continuously differentiable functions defined on the set of p-adic integers. In this paper his theory is continued by giving a characterization of the image of the Fourier transformation. Also a special form of continuity of the inverse Fourier transformation is proved and, as an application, the Fourier transform of an antiderivative of a function is calculated.