Calcium/calmodulin-dependent protein kinase II is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rat nucleus accumbens.
Kai Wen Xi, De Duo Chen, Xin Geng, Yan Bian, Min Xin Wang, Hui Bian
{"title":"Calcium/calmodulin-dependent protein kinase II is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rat nucleus accumbens.","authors":"Kai Wen Xi, De Duo Chen, Xin Geng, Yan Bian, Min Xin Wang, Hui Bian","doi":"10.3344/kjp.22372","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Synaptic plasticity contributes to nociceptive signal transmission and modulation, with calcium/calmodulin-dependent protein kinase II (CaMK II) playing a fundamental role in neural plasticity. This research was conducted to investigate the role of CaMK II in the transmission and regulation of nociceptive information within the nucleus accumbens (NAc) of naïve and morphine-tolerant rats.</p><p><strong>Methods: </strong>Randall Selitto and hot-plate tests were utilized to measure the hindpaw withdrawal latencies (HWLs) in response to noxious mechanical and thermal stimuli. To induce chronic morphine tolerance, rats received intraperitoneal morphine injection twice per day for seven days. CaMK II expression and activity were assessed using western blotting.</p><p><strong>Results: </strong>Intra-NAc microinjection of autocamtide-2-related inhibitory peptide (AIP) induced an increase in HWLs in naïve rats in response to noxious thermal and mechanical stimuli. Moreover, the expression of the phosphorylated CaMK II (p-CaMK II) was significantly decreased as determined by western blotting. Chronic intraperitoneal injection of morphine resulted in significant morphine tolerance in rats on Day 7, and an increase of p-CaMK II expression in NAc in morphine-tolerant rats was observed. Furthermore, intra-NAc administration of AIP elicited significant antinociceptive responses in morphine-tolerant rats. In addition, compared with naïve rats, AIP induced stronger thermal antinociceptive effects of the same dose in rats exhibiting morphine tolerance.</p><p><strong>Conclusions: </strong>This study shows that CaMK II in the NAc is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rats.</p>","PeriodicalId":56252,"journal":{"name":"Korean Journal of Pain","volume":"36 2","pages":"163-172"},"PeriodicalIF":3.4000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/be/c7/kjp-36-2-163.PMC10043793.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3344/kjp.22372","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Synaptic plasticity contributes to nociceptive signal transmission and modulation, with calcium/calmodulin-dependent protein kinase II (CaMK II) playing a fundamental role in neural plasticity. This research was conducted to investigate the role of CaMK II in the transmission and regulation of nociceptive information within the nucleus accumbens (NAc) of naïve and morphine-tolerant rats.
Methods: Randall Selitto and hot-plate tests were utilized to measure the hindpaw withdrawal latencies (HWLs) in response to noxious mechanical and thermal stimuli. To induce chronic morphine tolerance, rats received intraperitoneal morphine injection twice per day for seven days. CaMK II expression and activity were assessed using western blotting.
Results: Intra-NAc microinjection of autocamtide-2-related inhibitory peptide (AIP) induced an increase in HWLs in naïve rats in response to noxious thermal and mechanical stimuli. Moreover, the expression of the phosphorylated CaMK II (p-CaMK II) was significantly decreased as determined by western blotting. Chronic intraperitoneal injection of morphine resulted in significant morphine tolerance in rats on Day 7, and an increase of p-CaMK II expression in NAc in morphine-tolerant rats was observed. Furthermore, intra-NAc administration of AIP elicited significant antinociceptive responses in morphine-tolerant rats. In addition, compared with naïve rats, AIP induced stronger thermal antinociceptive effects of the same dose in rats exhibiting morphine tolerance.
Conclusions: This study shows that CaMK II in the NAc is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rats.
期刊介绍:
Korean Journal of Pain (Korean J Pain, KJP) is the official journal of the Korean Pain Society, founded in 1986. It has been published since 1988. It publishes peer reviewed original articles related to all aspects of pain, including clinical and basic research, patient care, education, and health policy. It has been published quarterly in English since 2009 (on the first day of January, April, July, and October). In addition, it has also become the official journal of the International Spinal Pain Society since 2016. The mission of the Journal is to improve the care of patients in pain by providing a forum for clinical researchers, basic scientists, clinicians, and other health professionals. The circulation number per issue is 50.