Glutamate acts as a key neurotransmitter for itch in the mammalian spinal cord.

IF 2.8 3区 医学 Q2 NEUROSCIENCES
Qi-Yu Chen, Min Zhuo
{"title":"Glutamate acts as a key neurotransmitter for itch in the mammalian spinal cord.","authors":"Qi-Yu Chen,&nbsp;Min Zhuo","doi":"10.1177/17448069231152101","DOIUrl":null,"url":null,"abstract":"<p><p>Itch sensation is one of the major sensory experiences of humans and animals. Recent studies using genetic deletion techniques have proposed that gastrin-releasing peptide (GRP) is a key neurotransmitter for itch in the spinal cord. However, these studies are mainly based on behavioral responses and lack direct electrophysiological evidence that GRP indeed mediates itch information between primary afferent fibers and spinal dorsal horn neurons. In this review, we reviewed recent studies using different experimental approaches and proposed that glutamate but not GRP acts as the key neurotransmitter in the primary afferents in the transmission of itch. GRP is more likely to serve as an itch-related neuromodulator. In the cerebral cortex, we propose that the anterior cingulate cortex (ACC) plays a significant role in both itch and pain sensations. Only behavioral measurement of itch (scratching) is not sufficient for itch measurement, since scratching the itching area also produces pleasure. Integrative experimental approaches as well as better behavioral scoring models are needed to help to understand the neuronal mechanism of itch and aid future treatment for patients with pruritic diseases.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846298/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069231152101","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Itch sensation is one of the major sensory experiences of humans and animals. Recent studies using genetic deletion techniques have proposed that gastrin-releasing peptide (GRP) is a key neurotransmitter for itch in the spinal cord. However, these studies are mainly based on behavioral responses and lack direct electrophysiological evidence that GRP indeed mediates itch information between primary afferent fibers and spinal dorsal horn neurons. In this review, we reviewed recent studies using different experimental approaches and proposed that glutamate but not GRP acts as the key neurotransmitter in the primary afferents in the transmission of itch. GRP is more likely to serve as an itch-related neuromodulator. In the cerebral cortex, we propose that the anterior cingulate cortex (ACC) plays a significant role in both itch and pain sensations. Only behavioral measurement of itch (scratching) is not sufficient for itch measurement, since scratching the itching area also produces pleasure. Integrative experimental approaches as well as better behavioral scoring models are needed to help to understand the neuronal mechanism of itch and aid future treatment for patients with pruritic diseases.

Abstract Image

Abstract Image

Abstract Image

在哺乳动物的脊髓中,谷氨酸是引起瘙痒的关键神经递质。
痒感是人类和动物的主要感官体验之一。近年来利用基因缺失技术的研究表明,胃泌素释放肽(GRP)是脊髓瘙痒的关键神经递质。然而,这些研究主要基于行为反应,缺乏直接的电生理证据证明GRP确实介导了初级传入纤维和脊髓背角神经元之间的瘙痒信息。在本文中,我们回顾了近年来不同实验方法的研究,并提出谷氨酸而不是GRP在瘙痒传递的初级传入神经中起关键的神经递质作用。GRP更可能作为瘙痒相关的神经调节剂。在大脑皮层中,我们提出前扣带皮层(ACC)在瘙痒和疼痛感觉中起着重要作用。仅仅对痒的行为测量(抓挠)是不够的,因为抓挠痒区域也会产生快感。需要综合实验方法和更好的行为评分模型来帮助理解瘙痒的神经元机制,并为瘙痒性疾病患者的未来治疗提供帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pain
Molecular Pain 医学-神经科学
CiteScore
5.60
自引率
3.00%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信