Henry S Pollock, Daniel Lamont, Sean E MacDonald, Austin R Spence, Jeffrey D Brawn, Zachary A Cheviron
{"title":"Widespread Torpor Use in Hummingbirds from the Thermally Stable Lowland Tropics.","authors":"Henry S Pollock, Daniel Lamont, Sean E MacDonald, Austin R Spence, Jeffrey D Brawn, Zachary A Cheviron","doi":"10.1086/722477","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractTorpor, the temporary reduction of metabolic rate and body temperature, is a common energy-saving strategy in endotherms. Because of their small body size and energetically demanding life histories, hummingbirds have proven useful for understanding when and why endotherms use torpor. Previous studies of torpor in hummingbirds have been largely limited to tropical montane species or long-distance migrants that regularly experience challenging thermal conditions. Comparatively little is known, however, about the use of torpor in hummingbirds of the lowland tropics, where relatively high and stable year-round temperatures may at least partially negate the need for torpor. To fill this knowledge gap, we tested for the occurrence of torpor in tropical lowland hummingbirds (<math><mrow><mi>n</mi><mo>=</mo><mn>37</mn></mrow></math> individuals of six species) from central Panama. In controlled experimental conditions simulating the local temperature regime, all six species used torpor to varying degrees and entered torpor at high ambient temperatures (i.e., ≥28°C), indicating that hummingbirds from the thermally stable lowland tropics regularly use torpor. Torpor reduced overnight mass loss, with individuals that spent more time in torpor losing less body mass during temperature experiments. Body mass was the best predictor of torpor depth and duration among and within species-smaller species and individuals tended to use torpor more frequently and enter deeper torpor. Average mass loss in our experiments (∼8%-10%) was greater than that reported in studies of hummingbirds from higher elevation sites (∼4%). We therefore posit that the energetic benefits accrued from torpor may be limited by relatively high nighttime temperatures in the lowland tropics, although further studies are needed to test this hypothesis.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":"96 2","pages":"119-127"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/722477","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractTorpor, the temporary reduction of metabolic rate and body temperature, is a common energy-saving strategy in endotherms. Because of their small body size and energetically demanding life histories, hummingbirds have proven useful for understanding when and why endotherms use torpor. Previous studies of torpor in hummingbirds have been largely limited to tropical montane species or long-distance migrants that regularly experience challenging thermal conditions. Comparatively little is known, however, about the use of torpor in hummingbirds of the lowland tropics, where relatively high and stable year-round temperatures may at least partially negate the need for torpor. To fill this knowledge gap, we tested for the occurrence of torpor in tropical lowland hummingbirds ( individuals of six species) from central Panama. In controlled experimental conditions simulating the local temperature regime, all six species used torpor to varying degrees and entered torpor at high ambient temperatures (i.e., ≥28°C), indicating that hummingbirds from the thermally stable lowland tropics regularly use torpor. Torpor reduced overnight mass loss, with individuals that spent more time in torpor losing less body mass during temperature experiments. Body mass was the best predictor of torpor depth and duration among and within species-smaller species and individuals tended to use torpor more frequently and enter deeper torpor. Average mass loss in our experiments (∼8%-10%) was greater than that reported in studies of hummingbirds from higher elevation sites (∼4%). We therefore posit that the energetic benefits accrued from torpor may be limited by relatively high nighttime temperatures in the lowland tropics, although further studies are needed to test this hypothesis.
期刊介绍:
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context.
Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.