{"title":"Structural optimization and miniaturization for Split-Gate Trench MOSFETs with 60 V breakdown voltage","authors":"Yu-Chin Lee, Jyh-Ling Lin","doi":"10.1016/j.ssel.2020.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>Power loss has long been a problem that humans continue to explore, especially in this high-performance era, in which the question of how to reduce the power loss of electronic products is an important issue. In this paper, Split-Gate MOSFETs were studied for parameter optimization and cell pitch miniaturization. The size of cell pitch is reduced to 1.45 um and specific on-resistance reduced to 79.81 mΩ-um<sup>2</sup> when the breakdown voltage is kept higher than 60 V. The power loss is reduced by almost 70% comparison to commercial Split-Gate Trench MOSFETs.</p></div>","PeriodicalId":101175,"journal":{"name":"Solid State Electronics Letters","volume":"2 ","pages":"Pages 23-27"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssel.2020.01.004","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Electronics Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589208820300041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Power loss has long been a problem that humans continue to explore, especially in this high-performance era, in which the question of how to reduce the power loss of electronic products is an important issue. In this paper, Split-Gate MOSFETs were studied for parameter optimization and cell pitch miniaturization. The size of cell pitch is reduced to 1.45 um and specific on-resistance reduced to 79.81 mΩ-um2 when the breakdown voltage is kept higher than 60 V. The power loss is reduced by almost 70% comparison to commercial Split-Gate Trench MOSFETs.