Stephen N. Njane , Yoshiaki Shinohara , Naoshi Kondo , Yuichi Ogawa , Tetsuhito Suzuki , Takahisa Nishizu
{"title":"Underwater fish volume estimation using closed and open cavity Helmholtz resonators","authors":"Stephen N. Njane , Yoshiaki Shinohara , Naoshi Kondo , Yuichi Ogawa , Tetsuhito Suzuki , Takahisa Nishizu","doi":"10.1016/j.eaef.2018.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>Volume is an important parameter in determining the density of aquatic products. However, due to the distended variation in shape and size of these products, it is difficult to precisely estimate their volume in water. In this study, we proposed a technique known as Helmholtz resonance for estimating the volume of fish in water. In order to do this, a closed cavity resonator was designed and utilised as an underwater prototype to demonstrate the potential for fish volume measurement. However, such a closed cavity resonator is thwarted by the need to open, insert the fish samples and close for measurement to be done. As a potentially more viable alternative, an open cavity resonator, which would allow fish to be measured without the need to close or lock the cavity was developed. Furthermore, this has the potential for automatic fish volume estimation where fish can pass through such an opening on the side of the resonator's cavity for measurement. Similar to the closed cavity resonator, as the volume of sampled fish increased, resonance frequency decreased in the open cavity resonator. The damping of the resonance frequency was caused by the viscous fish flesh and the elastic swim bladder in the anterior chamber of the model fish, a teleostean fish. By use of empirical equations, a linear regression model (R-squared) with an accuracy of 0.99 in the open cavity resonator was obtained. An underwater open cavity Helmholtz resonator has the potential for fish volume measurement.</p></div>","PeriodicalId":38965,"journal":{"name":"Engineering in Agriculture, Environment and Food","volume":"12 1","pages":"Pages 81-88"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.eaef.2018.09.006","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Agriculture, Environment and Food","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1881836617302161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Volume is an important parameter in determining the density of aquatic products. However, due to the distended variation in shape and size of these products, it is difficult to precisely estimate their volume in water. In this study, we proposed a technique known as Helmholtz resonance for estimating the volume of fish in water. In order to do this, a closed cavity resonator was designed and utilised as an underwater prototype to demonstrate the potential for fish volume measurement. However, such a closed cavity resonator is thwarted by the need to open, insert the fish samples and close for measurement to be done. As a potentially more viable alternative, an open cavity resonator, which would allow fish to be measured without the need to close or lock the cavity was developed. Furthermore, this has the potential for automatic fish volume estimation where fish can pass through such an opening on the side of the resonator's cavity for measurement. Similar to the closed cavity resonator, as the volume of sampled fish increased, resonance frequency decreased in the open cavity resonator. The damping of the resonance frequency was caused by the viscous fish flesh and the elastic swim bladder in the anterior chamber of the model fish, a teleostean fish. By use of empirical equations, a linear regression model (R-squared) with an accuracy of 0.99 in the open cavity resonator was obtained. An underwater open cavity Helmholtz resonator has the potential for fish volume measurement.
期刊介绍:
Engineering in Agriculture, Environment and Food (EAEF) is devoted to the advancement and dissemination of scientific and technical knowledge concerning agricultural machinery, tillage, terramechanics, precision farming, agricultural instrumentation, sensors, bio-robotics, systems automation, processing of agricultural products and foods, quality evaluation and food safety, waste treatment and management, environmental control, energy utilization agricultural systems engineering, bio-informatics, computer simulation, computational mechanics, farm work systems and mechanized cropping. It is an international English E-journal published and distributed by the Asian Agricultural and Biological Engineering Association (AABEA). Authors should submit the manuscript file written by MS Word through a web site. The manuscript must be approved by the author''s organization prior to submission if required. Contact the societies which you belong to, if you have any question on manuscript submission or on the Journal EAEF.