{"title":"Bridgman growth of CdxHg1−xTe— A review","authors":"P. Capper","doi":"10.1016/0146-3535(89)90002-6","DOIUrl":null,"url":null,"abstract":"<div><p>Recent developments in the bulk Bridgman growth method for Cd<sub>x</sub>Hg<sub>1−x</sub>Te are reviewed. Both melt mixing and heat flow control techniques have been applied in attempts to produce more uniform material in terms of composition. In the U.K. work has concentrated on application of the Accelerated Crucible Rotation Technique (ACRT) to achieve the required uniformity improvements. Elsewhere, various means to control isotherm shape have been used with the same aim. The ultimate use of the material is in infra-red detectors and Bridgman grown Cd<sub>x</sub>Hg<sub>1−x</sub>Te has produced these successfully for both photoconductive and photovoltaic applications.</p></div>","PeriodicalId":101046,"journal":{"name":"Progress in Crystal Growth and Characterization","volume":"19 4","pages":"Pages 259-293"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0146-3535(89)90002-6","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0146353589900026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Recent developments in the bulk Bridgman growth method for CdxHg1−xTe are reviewed. Both melt mixing and heat flow control techniques have been applied in attempts to produce more uniform material in terms of composition. In the U.K. work has concentrated on application of the Accelerated Crucible Rotation Technique (ACRT) to achieve the required uniformity improvements. Elsewhere, various means to control isotherm shape have been used with the same aim. The ultimate use of the material is in infra-red detectors and Bridgman grown CdxHg1−xTe has produced these successfully for both photoconductive and photovoltaic applications.