{"title":"Multi-agent in situ hybridization confirms Ca. Branchiomonas cysticola as a major contributor in complex gill disease in Atlantic salmon","authors":"Mona Cecilie Gjessing , Bjørn Spilsberg , Terje Marken Steinum , Marit Amundsen , Lars Austbø , Haakon Hansen , Duncan Colquhoun , Anne Berit Olsen","doi":"10.1016/j.fsirep.2021.100026","DOIUrl":null,"url":null,"abstract":"<div><p>Gill diseases may cause high mortalities in farmed Atlantic salmon. In seawater reared fish co-infections involving the epitheliocystis associated bacterium <em>Ca</em>. Branchiomonas cysticola, the microsporidian <em>Desmozoon lepeophtherii</em>, the causative agent of amoebic gill disease <em>Paramoeba perurans</em> and salmon gill poxvirus are common and histopathological lesions may be complex. Here, we report detection of these agents utilising multiplex real-time PCR and link the presence of agents to histopathologically visible gill lesions by in situ hybridisation (ISH) utilising RNAscope®. We show that <em>Ca</em>. Branchiomonas cysticola infections may remain undetected if diagnostic investigations are restricted to histopathology alone. Further, positive <em>in situ</em> labelling of <em>Ca</em>. Branchiomonas cysticola was observed within epitheliocysts, but also in small foci within areas of inflammation and necrosis in which histologically detectable epitheliocysts were not visible. In situ labelling of <em>D. lepeophtherii</em> corresponded well with tissue distribution patterns previously associated with this microsporidian. Salmon gill poxvirus was associated with apoptotic gill epithelial cells, while <em>Ca</em>. Piscichlamydia salmonis could not be associated with pathological changes. The multiplex real-time PCRs utilised were rapid and sensitive diagnostic tools and the results corresponded well with ISH. This study shows that the agents involved in complex gill disease can be linked to lesions using ISH and suggests that <em>Ca</em>. B. cysticola plays a crucial role in the development of gill disease in the farming of salmon in Norway.</p></div>","PeriodicalId":73029,"journal":{"name":"Fish and shellfish immunology reports","volume":"2 ","pages":"Article 100026"},"PeriodicalIF":2.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fsirep.2021.100026","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and shellfish immunology reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667011921000219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 20
Abstract
Gill diseases may cause high mortalities in farmed Atlantic salmon. In seawater reared fish co-infections involving the epitheliocystis associated bacterium Ca. Branchiomonas cysticola, the microsporidian Desmozoon lepeophtherii, the causative agent of amoebic gill disease Paramoeba perurans and salmon gill poxvirus are common and histopathological lesions may be complex. Here, we report detection of these agents utilising multiplex real-time PCR and link the presence of agents to histopathologically visible gill lesions by in situ hybridisation (ISH) utilising RNAscope®. We show that Ca. Branchiomonas cysticola infections may remain undetected if diagnostic investigations are restricted to histopathology alone. Further, positive in situ labelling of Ca. Branchiomonas cysticola was observed within epitheliocysts, but also in small foci within areas of inflammation and necrosis in which histologically detectable epitheliocysts were not visible. In situ labelling of D. lepeophtherii corresponded well with tissue distribution patterns previously associated with this microsporidian. Salmon gill poxvirus was associated with apoptotic gill epithelial cells, while Ca. Piscichlamydia salmonis could not be associated with pathological changes. The multiplex real-time PCRs utilised were rapid and sensitive diagnostic tools and the results corresponded well with ISH. This study shows that the agents involved in complex gill disease can be linked to lesions using ISH and suggests that Ca. B. cysticola plays a crucial role in the development of gill disease in the farming of salmon in Norway.