{"title":"Nanostructured thin films as electrochemical sensors and biosensors for milk analysis","authors":"M.L. Rodriguez-Mendez","doi":"10.1016/j.snr.2023.100179","DOIUrl":null,"url":null,"abstract":"<div><p>During the last decade, nanomaterials and supramolecular assemblies have received considerable attention in different fields of sensing applications. The interest of supramolecular assemblies arises from the exceptional performances of nanostructured films based on such assemblies, which are related to both their well-controlled structure and their large surface area. These characteristics increase the number of active sites and facilitate the charge transport pathways. In addition, supramolecular assemblies can be used to prepare multicomponent sensing layers formed by materials with complementary activity. Finally, supramolecular films are highly efficient platforms for enzyme immobilization leading to highly sensitive biosensing.</p><p>This paper describes the main concepts and approaches related to the development of supramolecular sensing layers in electrochemical sensors and biosensors. Different techniques commonly employed to develop supramolecular sensing layers, such as Self-assembling, Layer-by-layer and Langmuir-Blodgett, are described and their role as electron mediators in biosensors is revised using milk as an example of the target analyte. Using this approach, enzymes are immobilized in a biomimetic environment, giving rise to efficient biosensors able to detect glucose, galactose or lactose in milk with high degree of selectivity and low limits of detection.</p><p>We also include a brief discussion of the possibilities of the integration of supramolecular assemblies into sensor arrays as the core of electronic and bioelectronic tongues. The advantages of these systems are related to their fast responses and their capability to detect many components in a single measurement. The expected limitations mainly related to the fouling of the electrodes, are also discussed.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"6 ","pages":"Article 100179"},"PeriodicalIF":6.5000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053923000425/pdfft?md5=d1e8544e59f01a98e76533962718764b&pid=1-s2.0-S2666053923000425-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053923000425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During the last decade, nanomaterials and supramolecular assemblies have received considerable attention in different fields of sensing applications. The interest of supramolecular assemblies arises from the exceptional performances of nanostructured films based on such assemblies, which are related to both their well-controlled structure and their large surface area. These characteristics increase the number of active sites and facilitate the charge transport pathways. In addition, supramolecular assemblies can be used to prepare multicomponent sensing layers formed by materials with complementary activity. Finally, supramolecular films are highly efficient platforms for enzyme immobilization leading to highly sensitive biosensing.
This paper describes the main concepts and approaches related to the development of supramolecular sensing layers in electrochemical sensors and biosensors. Different techniques commonly employed to develop supramolecular sensing layers, such as Self-assembling, Layer-by-layer and Langmuir-Blodgett, are described and their role as electron mediators in biosensors is revised using milk as an example of the target analyte. Using this approach, enzymes are immobilized in a biomimetic environment, giving rise to efficient biosensors able to detect glucose, galactose or lactose in milk with high degree of selectivity and low limits of detection.
We also include a brief discussion of the possibilities of the integration of supramolecular assemblies into sensor arrays as the core of electronic and bioelectronic tongues. The advantages of these systems are related to their fast responses and their capability to detect many components in a single measurement. The expected limitations mainly related to the fouling of the electrodes, are also discussed.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.