The assessment of response surface methodology (RSM) and artificial neural network (ANN) modeling in dry flue gas desulfurization at low temperatures.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Robert Makomere, Hilary Rutto, Lawrence Koech
{"title":"The assessment of response surface methodology (RSM) and artificial neural network (ANN) modeling in dry flue gas desulfurization at low temperatures.","authors":"Robert Makomere,&nbsp;Hilary Rutto,&nbsp;Lawrence Koech","doi":"10.1080/10934529.2023.2174334","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of a flue gas desulfurization (FGD) system is characterized by SO<sub>2</sub> removal efficiency (<math><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub></math>) and reagent conversion (<math><msub><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msub></math>). Achieving a near-perfect reaction environment has been of concern in dry FGD (DFGD) due to the low reactivity compared to the wet and semi-dry units. This study will appraise output responses using modeling by response surface methodology (RSM) and artificial neural networks (ANN) approaches. The impacts of input parameters like hydration time, hydration temperature, diatomite to hydrated lime (Ca(OH)<sub>2</sub>), sulfation temperature and inlet gas concentration will be studied using a randomized central composite design (CCD). ANN fitting tool mapped the CCD metadata using the Levenberg-Marquardt (LM) algorithm activated by the hyperbolic tangent (<i>tansig</i>) function. The hidden cells ranged from 7 to 10 to ascertain the effect node architecture on modeling accuracy. Validation of each procedure was assessed using root mean square error (RMSE), mean square error (MSE) and R-Squared studies. The outcomes presented a more accurate 5-10-2 ANN model in the mapping of the DFGD from R<sup>2</sup> data of <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub></math> = 0.993 and <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msub></math> = 0.9986 with a mapping deviation from the RMSE values of <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub></math> = 0.48465; <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msub></math> = 0.44971 and MSE results of <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub></math> = 0.23488; <math><msub><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>.</mo></math>= 0.20229.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2174334","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The performance of a flue gas desulfurization (FGD) system is characterized by SO2 removal efficiency (Y1) and reagent conversion (Y2). Achieving a near-perfect reaction environment has been of concern in dry FGD (DFGD) due to the low reactivity compared to the wet and semi-dry units. This study will appraise output responses using modeling by response surface methodology (RSM) and artificial neural networks (ANN) approaches. The impacts of input parameters like hydration time, hydration temperature, diatomite to hydrated lime (Ca(OH)2), sulfation temperature and inlet gas concentration will be studied using a randomized central composite design (CCD). ANN fitting tool mapped the CCD metadata using the Levenberg-Marquardt (LM) algorithm activated by the hyperbolic tangent (tansig) function. The hidden cells ranged from 7 to 10 to ascertain the effect node architecture on modeling accuracy. Validation of each procedure was assessed using root mean square error (RMSE), mean square error (MSE) and R-Squared studies. The outcomes presented a more accurate 5-10-2 ANN model in the mapping of the DFGD from R2 data of Y1 = 0.993 and Y2 = 0.9986 with a mapping deviation from the RMSE values of Y1 = 0.48465; Y2 = 0.44971 and MSE results of Y1 = 0.23488; Y2.= 0.20229.

响应面法(RSM)和人工神经网络(ANN)建模在低温干法烟气脱硫中的评价。
烟气脱硫(FGD)系统的性能表征是SO2去除率(Y1)和试剂转化率(Y2)。由于与湿式和半干式装置相比,反应性较低,因此实现近乎完美的反应环境一直是干式烟气脱硫(DFGD)关注的问题。本研究将使用响应面法(RSM)和人工神经网络(ANN)方法建模来评估输出响应。采用随机中心复合设计(CCD)研究水化时间、水化温度、硅藻土对水化石灰(Ca(OH)2)、磺化温度和进口气体浓度等输入参数的影响。人工神经网络拟合工具使用双曲正切函数激活的Levenberg-Marquardt (LM)算法对CCD元数据进行映射。为了确定节点结构对建模精度的影响,隐藏的单元格从7到10不等。采用均方根误差(RMSE)、均方误差(MSE)和R-Squared研究评估每个程序的有效性。结果表明,从R2数据Y1 = 0.993和Y2 = 0.9986中映射DFGD的5-10-2神经网络模型更为准确,映射偏差与RMSE值Y1 = 0.48465;Y2 = 0.44971, MSE结果Y1 = 0.23488;Y2。= 0.20229。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信