The Bing staircase construction for Hilbert cube manifolds

Michael Handel
{"title":"The Bing staircase construction for Hilbert cube manifolds","authors":"Michael Handel","doi":"10.1016/0016-660X(78)90040-5","DOIUrl":null,"url":null,"abstract":"<div><p>Finite dimensional techniques of Bing and Bryant are extended to Hilbert cube manifolds to show that <span><math><mtext>M</mtext><mtext>A</mtext><mtext> × Q = M</mtext></math></span> where <em>M</em> is a Hilbert cube manifold, <em>A</em> is an embedded copy of <em>1</em><sup>k</sup>, 0<span><math><mtext>\\</mtext><mtext>̌</mtext></math></span>k<span><math><mtext>\\</mtext><mtext>̌</mtext></math></span>∞, and <em>Q</em> is the Hilbert cube. Among the corollaries given here are elementary proofs of two theorems of West: the mapping cylinder theorem and the sum theorem for Hilbert cube factors.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"9 1","pages":"Pages 29-40"},"PeriodicalIF":0.0000,"publicationDate":"1978-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90040-5","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X78900405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Finite dimensional techniques of Bing and Bryant are extended to Hilbert cube manifolds to show that MA × Q = M where M is a Hilbert cube manifold, A is an embedded copy of 1k, 0\̌k\̌∞, and Q is the Hilbert cube. Among the corollaries given here are elementary proofs of two theorems of West: the mapping cylinder theorem and the sum theorem for Hilbert cube factors.

希尔伯特立方体流形的Bing阶梯构造
将Bing和Bryant的有限维技术推广到希尔伯特立方体流形,证明了MA × Q = M,其中M是希尔伯特立方体流形,a是1k, 0\ k\ k∞的嵌入副本,Q是希尔伯特立方体。在这里给出的推论中有两个定理的初等证明:映射柱面定理和希尔伯特立方因子的和定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信