Lattices of compactifications of Tychonoff spaces

Yusuf Ünlü
{"title":"Lattices of compactifications of Tychonoff spaces","authors":"Yusuf Ünlü","doi":"10.1016/0016-660X(78)90041-7","DOIUrl":null,"url":null,"abstract":"<div><p>It is shown that, for a Tychonoff space <em>X</em>, the complete upper semilattice <em>K</em>(<em>X</em>) of compactifications of <em>X</em> is a lattice if either (1) β<em>X</em>⧹<em>X</em> is realcompact and <em>C<sup>∗</sup></em>-embedded in β<em>X</em>, or (2) β<em>X</em>⧹<em>X</em> is a <em>P</em>-space and cl<sub>β<em>X</em></sub>(β<em>X</em>⧹<em>X</em>) is an <em>F</em>-space. The concept of bounding lattice is introduced and examples of spaces <em>X</em> are given such that <em>K</em>(<em>X</em>) is a lattice but not a bounding lattice. A certain class of Tychonoff spaces <em>X</em> is constructed such that <em>K</em>(<em>X</em>) is a lattice.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"9 1","pages":"Pages 41-57"},"PeriodicalIF":0.0000,"publicationDate":"1978-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90041-7","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X78900417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

It is shown that, for a Tychonoff space X, the complete upper semilattice K(X) of compactifications of X is a lattice if either (1) βXX is realcompact and C-embedded in βX, or (2) βXX is a P-space and clβXXX) is an F-space. The concept of bounding lattice is introduced and examples of spaces X are given such that K(X) is a lattice but not a bounding lattice. A certain class of Tychonoff spaces X is constructed such that K(X) is a lattice.

Tychonoff空间的紧化格
证明了对于Tychonoff空间X,如果(1)βX⧹X是实紧的且C * -嵌入在βX中,或(2)βX⧹X是p空间,clβX(βX⧹X)是f空间,则X的紧化的完全上半格K(X)是格。引入了边界格的概念,并给出了K(X)是格但不是边界格的空间X的例子。构造了一类Tychonoff空间X,使得K(X)是格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信