Spaces with σ-point finite bases

W.N. Hunsaker, W.F. Lindgren
{"title":"Spaces with σ-point finite bases","authors":"W.N. Hunsaker,&nbsp;W.F. Lindgren","doi":"10.1016/0016-660X(78)90003-X","DOIUrl":null,"url":null,"abstract":"<div><p><em>Theorem</em>. Let <em>X</em> be a T<sub>1</sub> space. The following are equivalent:</p><ul><li><span>(1)</span><span><p><em>X</em> has a σ-disjoint base.</p></span></li><li><span>(FX2)</span><span><p><em>X</em> is quasi-developable and has a base that is the union of a sequence of rank 1 collections.</p></span></li><li><span>(3)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub>n</sub>) with the property that for each <em>x</em>, <span><math><mtext>{st</mtext><msup><mi></mi><mn>2</mn></msup><mtext>(x,</mtext><mtext>G</mtext><msub><mi></mi><mn>n</mn></msub><mtext>): x ∈st</mtext><msup><mi></mi><mn>2</mn></msup><mtext>(x,</mtext><mtext>G</mtext><msub><mi></mi><mn>n</mn></msub><mtext>)</mtext></math></span>, <em>n</em> a positive integer} is a base for <span><math><mtext>N</mtext></math></span> (x).</p></span></li></ul><p><em>Theorem</em>. Let <em>X</em> be a T<sub>1</sub> space. The following are equivalent:</p><ul><li><span>(1)</span><span><p><em>X</em> has a <em>σ</em>-point finite base.</p></span></li><li><span>(2)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub><em>n</em></sub>) with each <span><math><mtext>G</mtext></math></span><sub><em>n</em></sub> well ranked.</p></span></li><li><span>(3)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub><em>n</em></sub>) with each <span><math><mtext>G</mtext></math></span><sub><em>n</em></sub> Noetherian of sub-infinite rank.</p></span></li><li><span>(4)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub><em>n</em></sub>) with each <span><math><mtext>G</mtext></math></span><sub><em>n</em></sub> Noetherian of point finite rank.</p></span></li></ul></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"8 3","pages":"Pages 229-232"},"PeriodicalIF":0.0000,"publicationDate":"1978-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90003-X","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X7890003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Theorem. Let X be a T1 space. The following are equivalent:

  • (1)

    X has a σ-disjoint base.

  • (FX2)

    X is quasi-developable and has a base that is the union of a sequence of rank 1 collections.

  • (3)

    X has a quasi-development (Gn) with the property that for each x, {st2(x,Gn): x ∈st2(x,Gn), n a positive integer} is a base for N (x).

Theorem. Let X be a T1 space. The following are equivalent:

  • (1)

    X has a σ-point finite base.

  • (2)

    X has a quasi-development (Gn) with each Gn well ranked.

  • (3)

    X has a quasi-development (Gn) with each Gn Noetherian of sub-infinite rank.

  • (4)

    X has a quasi-development (Gn) with each Gn Noetherian of point finite rank.

具有σ-点有限基的空间
定理。设X是T1空间。下列是等价的:(1)X有一个σ-不相交的基。(FX2)X是拟可展开的并且有一个基是秩1集合序列的并。(3)X有一个拟可展开(Gn),其性质是:对于每一个X, {st2(X,Gn): X∈st2(X,Gn), n是n (X)的一个基。定理。设X是T1空间。以下是等价的:(1)X有一个σ-点有限基(2)X对每一个Gn都有一个准展开(Gn), (3)X对每一个次无限秩的Gn noetheran都有一个准展开(Gn), (4)X对每一个有限秩的Gn noetheran都有一个准展开(Gn)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信