{"title":"Spaces with σ-point finite bases","authors":"W.N. Hunsaker, W.F. Lindgren","doi":"10.1016/0016-660X(78)90003-X","DOIUrl":null,"url":null,"abstract":"<div><p><em>Theorem</em>. Let <em>X</em> be a T<sub>1</sub> space. The following are equivalent:</p><ul><li><span>(1)</span><span><p><em>X</em> has a σ-disjoint base.</p></span></li><li><span>(FX2)</span><span><p><em>X</em> is quasi-developable and has a base that is the union of a sequence of rank 1 collections.</p></span></li><li><span>(3)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub>n</sub>) with the property that for each <em>x</em>, <span><math><mtext>{st</mtext><msup><mi></mi><mn>2</mn></msup><mtext>(x,</mtext><mtext>G</mtext><msub><mi></mi><mn>n</mn></msub><mtext>): x ∈st</mtext><msup><mi></mi><mn>2</mn></msup><mtext>(x,</mtext><mtext>G</mtext><msub><mi></mi><mn>n</mn></msub><mtext>)</mtext></math></span>, <em>n</em> a positive integer} is a base for <span><math><mtext>N</mtext></math></span> (x).</p></span></li></ul><p><em>Theorem</em>. Let <em>X</em> be a T<sub>1</sub> space. The following are equivalent:</p><ul><li><span>(1)</span><span><p><em>X</em> has a <em>σ</em>-point finite base.</p></span></li><li><span>(2)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub><em>n</em></sub>) with each <span><math><mtext>G</mtext></math></span><sub><em>n</em></sub> well ranked.</p></span></li><li><span>(3)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub><em>n</em></sub>) with each <span><math><mtext>G</mtext></math></span><sub><em>n</em></sub> Noetherian of sub-infinite rank.</p></span></li><li><span>(4)</span><span><p><em>X</em> has a quasi-development (<span><math><mtext>G</mtext></math></span><sub><em>n</em></sub>) with each <span><math><mtext>G</mtext></math></span><sub><em>n</em></sub> Noetherian of point finite rank.</p></span></li></ul></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"8 3","pages":"Pages 229-232"},"PeriodicalIF":0.0000,"publicationDate":"1978-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90003-X","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X7890003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Theorem. Let X be a T1 space. The following are equivalent:
(1)
X has a σ-disjoint base.
(FX2)
X is quasi-developable and has a base that is the union of a sequence of rank 1 collections.
(3)
X has a quasi-development (n) with the property that for each x, , n a positive integer} is a base for (x).
Theorem. Let X be a T1 space. The following are equivalent:
(1)
X has a σ-point finite base.
(2)
X has a quasi-development (n) with each n well ranked.
(3)
X has a quasi-development (n) with each n Noetherian of sub-infinite rank.
(4)
X has a quasi-development (n) with each n Noetherian of point finite rank.