PhysiCOOL: A generalized framework for model Calibration and Optimization Of modeLing projects.

GigaByte (Hong Kong, China) Pub Date : 2023-02-28 eCollection Date: 2023-01-01 DOI:10.46471/gigabyte.77
Inês G Gonçalves, David A Hormuth, Sandhya Prabhakaran, Caleb M Phillips, José Manuel García-Aznar
{"title":"PhysiCOOL: A generalized framework for model Calibration and Optimization Of modeLing projects.","authors":"Inês G Gonçalves, David A Hormuth, Sandhya Prabhakaran, Caleb M Phillips, José Manuel García-Aznar","doi":"10.46471/gigabyte.77","DOIUrl":null,"url":null,"abstract":"<p><p><i>In silico</i> models of biological systems are usually very complex and rely on a large number of parameters describing physical and biological properties that require validation. As such, parameter space exploration is an essential component of computational model development to fully characterize and validate simulation results. Experimental data may also be used to constrain parameter space (or enable model calibration) to enhance the biological relevance of model parameters. One widely used computational platform in the mathematical biology community is <i>PhysiCell,</i> which provides a standardized approach to agent-based models of biological phenomena at different time and spatial scales. Nonetheless, one limitation of <i>PhysiCell</i> is the lack of a generalized approach for parameter space exploration and calibration that can be run without high-performance computing access. Here, we present <i>PhysiCOOL</i>, an open-source Python library tailored to create standardized calibration and optimization routines for <i>PhysiCell</i> models.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2023 ","pages":"gigabyte77"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027115/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaByte (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46471/gigabyte.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In silico models of biological systems are usually very complex and rely on a large number of parameters describing physical and biological properties that require validation. As such, parameter space exploration is an essential component of computational model development to fully characterize and validate simulation results. Experimental data may also be used to constrain parameter space (or enable model calibration) to enhance the biological relevance of model parameters. One widely used computational platform in the mathematical biology community is PhysiCell, which provides a standardized approach to agent-based models of biological phenomena at different time and spatial scales. Nonetheless, one limitation of PhysiCell is the lack of a generalized approach for parameter space exploration and calibration that can be run without high-performance computing access. Here, we present PhysiCOOL, an open-source Python library tailored to create standardized calibration and optimization routines for PhysiCell models.

Abstract Image

Abstract Image

Abstract Image

PhysiCOOL:用于模型校准和优化模式化项目的通用框架。
生物系统的硅学模型通常非常复杂,依赖于大量需要验证的物理和生物特性参数。因此,参数空间探索是计算模型开发的重要组成部分,可全面描述和验证模拟结果。实验数据也可用于限制参数空间(或进行模型校准),以提高模型参数的生物相关性。数学生物学界广泛使用的一个计算平台是 PhysiCell,它为不同时间和空间尺度的生物现象提供了基于代理模型的标准化方法。然而,PhysiCell 的一个局限是缺乏一种无需高性能计算接入即可运行的参数空间探索和校准通用方法。在这里,我们介绍 PhysiCOOL,这是一个开源 Python 库,专门用于为 PhysiCell 模型创建标准化的校准和优化例程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信