Basis properties of topologies compatible with (not necessarily symmetric) distance-functions

Hans-Christian Reichel
{"title":"Basis properties of topologies compatible with (not necessarily symmetric) distance-functions","authors":"Hans-Christian Reichel","doi":"10.1016/0016-660X(78)90007-7","DOIUrl":null,"url":null,"abstract":"<div><p>One of the aims of this paper is to generalize a theorem of P. Fletcher and W.F. Lindgren characterizing second countable spaces. On behalf of that, we investigate a basis property related to the concept of σ-<em>Q</em>-bases defined by Fletcher and Lindgren and orthobases studied by P. Nyikos and W.F. Lindgren. In this new setting we state a necessary and sufficient condition for ω<sub>μ</sub>-quasimetrizability of topological spaces and we discuss a problem of P. Fletcher and W.F. Lindgren and a related theorem of S. Nedev concerning quasimetrizability of <em>T</em><sub>1</sub>-spaces. As a corollary we give a characterization of ω<sub>μ</sub>-additive spaces having a base of cardinality ω<sub>μ</sub>— In the second part of the paper, we study (not necessarily symmetric) distance-functions on a space <em>X</em> taking their values in a partially ordered group <em>H</em>. We show that every <em>T</em><sub>1</sub>-space <em>X</em> is quasimetrizable in this generalized sense.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"8 3","pages":"Pages 283-289"},"PeriodicalIF":0.0000,"publicationDate":"1978-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90007-7","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X78900077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

One of the aims of this paper is to generalize a theorem of P. Fletcher and W.F. Lindgren characterizing second countable spaces. On behalf of that, we investigate a basis property related to the concept of σ-Q-bases defined by Fletcher and Lindgren and orthobases studied by P. Nyikos and W.F. Lindgren. In this new setting we state a necessary and sufficient condition for ωμ-quasimetrizability of topological spaces and we discuss a problem of P. Fletcher and W.F. Lindgren and a related theorem of S. Nedev concerning quasimetrizability of T1-spaces. As a corollary we give a characterization of ωμ-additive spaces having a base of cardinality ωμ— In the second part of the paper, we study (not necessarily symmetric) distance-functions on a space X taking their values in a partially ordered group H. We show that every T1-space X is quasimetrizable in this generalized sense.

与(不一定对称的)距离函数兼容的拓扑的基本性质
本文的目的之一是推广P. Fletcher和W.F. Lindgren关于第二可数空间的一个定理。在此基础上,我们研究了Fletcher和Lindgren所定义的σ- q基的概念以及P. Nyikos和W.F. Lindgren所研究的正基的一个基本性质。在这个新条件下,给出了拓扑空间ωμ-拟度量性的充分必要条件,讨论了P. Fletcher和W.F. Lindgren关于t1 -空间拟度量性的一个问题和S. Nedev关于t1 -空间拟度量性的一个相关定理。作为一个推论,我们给出了以基数ωμ-为基的ωμ-加性空间的刻画。在第二部分,我们研究了空间X上(不一定是对称的)距离函数在偏序群h中的取值,并证明了在这种广义意义上,每个t1 -空间X都是准度量的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信