The number of independent sets of unicyclic graphs with given matching number

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Gong Chen , Zhongxun Zhu
{"title":"The number of independent sets of unicyclic graphs with given matching number","authors":"Gong Chen ,&nbsp;Zhongxun Zhu","doi":"10.1016/j.dam.2011.09.007","DOIUrl":null,"url":null,"abstract":"<div><p>The Hosoya index <span><math><mi>z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is defined as the number of matchings of <span><math><mi>G</mi></math></span> and the Merrifield–Simmons index <span><math><mi>i</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> of <span><math><mi>G</mi></math></span> is defined as the number of independent sets of <span><math><mi>G</mi></math></span>. Let <span><math><mi>U</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span> be the set of all unicyclic graphs on <span><math><mi>n</mi></math></span> vertices with <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>m</mi></math></span>. Denote by <span><math><msup><mrow><mi>U</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span> the graph on <span><math><mi>n</mi></math></span> vertices obtained from <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> by attaching <span><math><mi>n</mi><mo>−</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></math></span> pendant edges and <span><math><mi>m</mi><mo>−</mo><mn>2</mn></math></span> paths of length 2 at one vertex of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>. Let <span><math><msup><mrow><mi>U</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span> denote the <span><math><mi>n</mi></math></span>-vertex graph obtained from <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> by attaching <span><math><mi>n</mi><mo>−</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></math></span> pendant edges and <span><math><mi>m</mi><mo>−</mo><mn>3</mn></math></span> paths of length 2 at one vertex of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and one pendant edge at each of the other two vertices of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>. In this paper, we show that <span><math><msup><mrow><mi>U</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span> and <span><math><msup><mrow><mi>U</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span> have minimal, second minimal Hosoya index, and maximal, second maximal Merrifield–Simmons index among all graphs in <span><math><mi>U</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow><mo>∖</mo><mrow><mo>{</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow></math></span>, respectively.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"160 1","pages":"Pages 108-115"},"PeriodicalIF":1.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.dam.2011.09.007","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X1100343X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

Abstract

The Hosoya index z(G) of a graph G is defined as the number of matchings of G and the Merrifield–Simmons index i(G) of G is defined as the number of independent sets of G. Let U(n,m) be the set of all unicyclic graphs on n vertices with α(G)=m. Denote by U1(n,m) the graph on n vertices obtained from C3 by attaching n2m+1 pendant edges and m2 paths of length 2 at one vertex of C3. Let U2(n,m) denote the n-vertex graph obtained from C3 by attaching n2m+1 pendant edges and m3 paths of length 2 at one vertex of C3, and one pendant edge at each of the other two vertices of C3. In this paper, we show that U1(n,m) and U2(n,m) have minimal, second minimal Hosoya index, and maximal, second maximal Merrifield–Simmons index among all graphs in U(n,m){Cn}, respectively.

给定匹配数的单环图的独立集的个数
图G的Hosoya指标z(G)定义为G的匹配个数,G的Merrifield-Simmons指标i(G)定义为G的独立集的个数。设U(n,m)为n个顶点上α′(G)=m的所有单环图的集合。用U1(n,m)表示从C3得到的n个顶点上的图,通过在C3的一个顶点上附加n - 2m+1条垂边和m - 2条长度为2的路径。设U2(n,m)表示C3的n顶点图,在C3的一个顶点上附加n- 2m+1条垂边和m - 3条长度为2的路径,在C3的另外两个顶点上各附加1条垂边。本文证明了U1(n,m)和U2(n,m)在U(n,m)∈{Cn}的所有图中分别具有极小、次极小Hosoya指数和极大、次极大Merrifield-Simmons指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信