{"title":"The Torelli theorem for the moduli spaces of connections on a Riemann surface","authors":"Indranil Biswas , Vicente Muñoz","doi":"10.1016/j.top.2007.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></math></span> be any one-pointed compact connected Riemann surface of genus <span><math><mi>g</mi></math></span>, with <span><math><mi>g</mi><mo>≥</mo><mn>3</mn></math></span>. Fix two mutually coprime integers <span><math><mi>r</mi><mo>></mo><mn>1</mn></math></span> and <span><math><mi>d</mi></math></span>. Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> denote the moduli space parametrizing all logarithmic <span><math><mstyle><mi>SL</mi></mstyle><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></math></span>-connections, singular over <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, on vector bundles over <span><math><mi>X</mi></math></span> of degree <span><math><mi>d</mi></math></span>. We prove that the isomorphism class of the variety <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> determines the Riemann surface <span><math><mi>X</mi></math></span> uniquely up to an isomorphism, although the biholomorphism class of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is known to be independent of the complex structure of <span><math><mi>X</mi></math></span>. The isomorphism class of the variety <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is independent of the point <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>X</mi></math></span>. A similar result is proved for the moduli space parametrizing logarithmic <span><math><mstyle><mi>GL</mi></mstyle><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></math></span>-connections, singular over <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, on vector bundles over <span><math><mi>X</mi></math></span> of degree <span><math><mi>d</mi></math></span>. The assumption <span><math><mi>r</mi><mo>></mo><mn>1</mn></math></span> is necessary for the moduli space of logarithmic <span><math><mstyle><mi>GL</mi></mstyle><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></math></span>-connections to determine the isomorphism class of <span><math><mi>X</mi></math></span> uniquely.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 3","pages":"Pages 295-317"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.02.005","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Let be any one-pointed compact connected Riemann surface of genus , with . Fix two mutually coprime integers and . Let denote the moduli space parametrizing all logarithmic -connections, singular over , on vector bundles over of degree . We prove that the isomorphism class of the variety determines the Riemann surface uniquely up to an isomorphism, although the biholomorphism class of is known to be independent of the complex structure of . The isomorphism class of the variety is independent of the point . A similar result is proved for the moduli space parametrizing logarithmic -connections, singular over , on vector bundles over of degree . The assumption is necessary for the moduli space of logarithmic -connections to determine the isomorphism class of uniquely.