{"title":"Data Stream Classification Based on Extreme Learning Machine: A Review","authors":"Xiulin Zheng , Peipei Li , Xindong Wu","doi":"10.1016/j.bdr.2022.100356","DOIUrl":null,"url":null,"abstract":"<div><p>Many daily applications are generating massive amount of data in the form of stream at an ever higher speed, such as medical data, clicking stream, internet record and banking transaction, etc. In contrast to the traditional static data, data streams are of some inherent properties, to name a few, infinite length, concept drift, multiple labels and concept evolution. Among all the data mining tasks<span><span>, classification is one of the basic topics in data stream mining and has gained more and more attentions among different research communities. Extreme Learning Machine<span> (ELM) has drawn much interests in data classification due to its high efficiency, universal approximation capability, </span></span>generalization ability<span>, and simplicity, which have greatly inspired the development of many ELM-based algorithms and their applications during the past decades. In this paper, we mainly provide a comprehensive review on ELM theoretical research and its variants in data stream classification, and categorize these algorithms from different perspectives. Firstly, we briefly introduce the basic principles of ELM and its characteristics. Secondly, we give an overview of different ELM variants to address the particular issues of data stream classification. Thirdly, we present an overview of different strategies to optimize the ELM, which have further improved the stability, accuracy and generalization ability of ELM, and briefly introduce some practical applications of ELM in data stream classification. Finally, we conduct several groups of experiments to compare the performance of ELM based models addressing the focused issues. Also, the open issues and prospects of ELM models used for stream classification are discussed, which are worthwhile to be further studied in the future.</span></span></p></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"30 ","pages":"Article 100356"},"PeriodicalIF":3.5000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579622000508","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
Many daily applications are generating massive amount of data in the form of stream at an ever higher speed, such as medical data, clicking stream, internet record and banking transaction, etc. In contrast to the traditional static data, data streams are of some inherent properties, to name a few, infinite length, concept drift, multiple labels and concept evolution. Among all the data mining tasks, classification is one of the basic topics in data stream mining and has gained more and more attentions among different research communities. Extreme Learning Machine (ELM) has drawn much interests in data classification due to its high efficiency, universal approximation capability, generalization ability, and simplicity, which have greatly inspired the development of many ELM-based algorithms and their applications during the past decades. In this paper, we mainly provide a comprehensive review on ELM theoretical research and its variants in data stream classification, and categorize these algorithms from different perspectives. Firstly, we briefly introduce the basic principles of ELM and its characteristics. Secondly, we give an overview of different ELM variants to address the particular issues of data stream classification. Thirdly, we present an overview of different strategies to optimize the ELM, which have further improved the stability, accuracy and generalization ability of ELM, and briefly introduce some practical applications of ELM in data stream classification. Finally, we conduct several groups of experiments to compare the performance of ELM based models addressing the focused issues. Also, the open issues and prospects of ELM models used for stream classification are discussed, which are worthwhile to be further studied in the future.
期刊介绍:
The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic.
The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.