Minimally-Invasive and Efficient Method to Accurately Fit the Bergman Minimal Model to Diabetes Type 2.

IF 2.3 4区 医学 Q3 BIOPHYSICS
Cellular and molecular bioengineering Pub Date : 2022-02-02 eCollection Date: 2022-06-01 DOI:10.1007/s12195-022-00719-x
Ana Gabriela Gallardo-Hernández, Marcos A González-Olvera, Medardo Castellanos-Fuentes, Jésica Escobar, Cristina Revilla-Monsalve, Ana Luisa Hernandez-Perez, Ron Leder
{"title":"Minimally-Invasive and Efficient Method to Accurately Fit the Bergman Minimal Model to Diabetes Type 2.","authors":"Ana Gabriela Gallardo-Hernández, Marcos A González-Olvera, Medardo Castellanos-Fuentes, Jésica Escobar, Cristina Revilla-Monsalve, Ana Luisa Hernandez-Perez, Ron Leder","doi":"10.1007/s12195-022-00719-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Diabetes mellitus is a global burden that is expected to grow <math><mrow><mn>25</mn> <mo>%</mo></mrow> </math> by 2030. This will increase the need for prevention, diagnosis and treatment of diabetes. Animal and individualized <i>in silico</i> models will allow understanding and compensation for inter and intra-individual differences in treatment and management strategies for diabetic patients. The method presented here can advance the concept of personalized medicine.</p><p><strong>Methods: </strong>Twenty experiments were performed with Sprague-Dawley rats with streptozotocin induced experimental diabetes in which the insulin-glucose response curve was recorded over 60-100 min using only an insulin pump and a percutaneous glucose sensor. The information was used to fit the five-parameter Bergman Minimal Model to the experimental results using a genetic algorithm with a root-mean-squared optimization rule.</p><p><strong>Results: </strong>The Bergman Minimal Model parameters were estimated with high accuracy, low prediction bias, and low average root-mean-squared error of 15.27 mg/dl glucose.</p><p><strong>Conclusions: </strong>This study demonstrates a simple method to accurately parameterize the Bergman Minimal Model. We used Sprague-Dawley rats since their physiology is close to that of humans. The parameters can be used to objectively characterize the physiological severity of diabetes. In this way, planned treatments can compensate for natural variations of conditions both inter and intra patients. Changes in parameters indicate the patient's diabetic condition using values of glucose effectiveness ( <math> <mrow><msub><mi>S</mi> <mtext>G</mtext></msub> <mo>=</mo> <msub><mi>p</mi> <mn>1</mn></msub> </mrow> </math> ) and insulin sensitivity ( <math> <mrow><msub><mi>S</mi> <mi>I</mi></msub> <mo>=</mo> <msub><mi>p</mi> <mn>3</mn></msub> <mo>/</mo> <msub><mi>p</mi> <mn>2</mn></msub> </mrow> </math> ). Quantifying the diabetic patient's condition is consistent with the trend toward personalized medicine. Parameter values can also be used to explain atypical research results of other studies and increase understanding of diabetes.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"15 3","pages":"267-279"},"PeriodicalIF":2.3000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124285/pdf/12195_2022_Article_719.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-022-00719-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Diabetes mellitus is a global burden that is expected to grow 25 % by 2030. This will increase the need for prevention, diagnosis and treatment of diabetes. Animal and individualized in silico models will allow understanding and compensation for inter and intra-individual differences in treatment and management strategies for diabetic patients. The method presented here can advance the concept of personalized medicine.

Methods: Twenty experiments were performed with Sprague-Dawley rats with streptozotocin induced experimental diabetes in which the insulin-glucose response curve was recorded over 60-100 min using only an insulin pump and a percutaneous glucose sensor. The information was used to fit the five-parameter Bergman Minimal Model to the experimental results using a genetic algorithm with a root-mean-squared optimization rule.

Results: The Bergman Minimal Model parameters were estimated with high accuracy, low prediction bias, and low average root-mean-squared error of 15.27 mg/dl glucose.

Conclusions: This study demonstrates a simple method to accurately parameterize the Bergman Minimal Model. We used Sprague-Dawley rats since their physiology is close to that of humans. The parameters can be used to objectively characterize the physiological severity of diabetes. In this way, planned treatments can compensate for natural variations of conditions both inter and intra patients. Changes in parameters indicate the patient's diabetic condition using values of glucose effectiveness ( S G = p 1 ) and insulin sensitivity ( S I = p 3 / p 2 ). Quantifying the diabetic patient's condition is consistent with the trend toward personalized medicine. Parameter values can also be used to explain atypical research results of other studies and increase understanding of diabetes.

Abstract Image

Abstract Image

Abstract Image

用微创高效的方法将伯格曼最小模型与 2 型糖尿病精确匹配。
引言糖尿病是一项全球性负担,预计到 2030 年将增长 25%。这将增加对糖尿病预防、诊断和治疗的需求。动物模型和个体化硅学模型将有助于了解和补偿糖尿病患者治疗和管理策略的个体间和个体内差异。本文介绍的方法可推动个性化医疗概念的发展:方法:用链脲佐菌素诱导的 Sprague-Dawley 实验性糖尿病大鼠进行了 20 次实验,仅使用胰岛素泵和经皮葡萄糖传感器记录了 60-100 分钟的胰岛素-葡萄糖反应曲线。利用这些信息,使用带有均方根优化规则的遗传算法将五参数伯格曼最小模型与实验结果进行拟合:结果:伯格曼最小模型参数估计准确率高、预测偏差小,平均均方根误差低,仅为 15.27 mg/dl 葡萄糖:结论:本研究展示了一种准确设置伯格曼最小模型参数的简单方法。我们使用了 Sprague-Dawley 大鼠,因为它们的生理机能与人类接近。这些参数可用于客观描述糖尿病的生理严重程度。这样,计划中的治疗就可以弥补患者之间和患者内部的自然条件差异。参数的变化通过葡萄糖有效性(S G = p 1)和胰岛素敏感性(S I = p 3 / p 2)的值来显示患者的糖尿病状况。量化糖尿病患者的病情符合个性化医疗的发展趋势。参数值还可用于解释其他研究的非典型研究结果,加深对糖尿病的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
3.60%
发文量
30
审稿时长
>12 weeks
期刊介绍: The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas: Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example. Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions. Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress. Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信