Co-Inoculation of Non-Symbiotic Bacteria Bacillus and Paraburkholderia Can Improve the Soybean Yield, Nutrient Uptake, and Soil Parameters.

IF 2.5 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Biotechnology Pub Date : 2025-08-01 Epub Date: 2023-03-22 DOI:10.1007/s12033-023-00719-w
Anjali Chandrol Solanki, Narendra Singh Gurjar, Satish Sharma
{"title":"Co-Inoculation of Non-Symbiotic Bacteria Bacillus and Paraburkholderia Can Improve the Soybean Yield, Nutrient Uptake, and Soil Parameters.","authors":"Anjali Chandrol Solanki, Narendra Singh Gurjar, Satish Sharma","doi":"10.1007/s12033-023-00719-w","DOIUrl":null,"url":null,"abstract":"<p><p>Due to its nutritional value and oil, soybean (Glycine max L.) became an economic crop in India and worldwide. The current study investigated the effect of forest-associated plant growth-promoting rhizobacteria (PGPR) on soybean yield and grain nutrient content. Five potential bacteria were used in this study based on their PGPR traits. The pot assay result with two crops (soybean and chickpea) confirmed the growth promotion activity of the two strains (Bacillus subtilis MpS15 and Paraburkholderia sabiae NvS21). The result showed significant (p < 0.05) enhancement in plant length and biomass with the seed treatment with strains (MpS15 and NvS21) compared to the control. Later both biocompatible potential strains were used in field experiments as individuals and consortia. Seed treatment of consortia significantly improves the nodulation and photosynthetic content more than individual treatments and control. Compared to the control, the co-inoculation of MpS15 and NvS21 increased soybean grain, straw yield, and grain NPK contents. Interestingly, soil parameters (organic carbon, available NPK) showed a strong correlation (p < 0.05) with plant parameters and nutrient uptake. Overall, our study provides strong relationships between soil parameters, microbial inoculum as consortia, and soybean performance, and these strains may be utilized as bioinoculant in future.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3041-3053"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00719-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its nutritional value and oil, soybean (Glycine max L.) became an economic crop in India and worldwide. The current study investigated the effect of forest-associated plant growth-promoting rhizobacteria (PGPR) on soybean yield and grain nutrient content. Five potential bacteria were used in this study based on their PGPR traits. The pot assay result with two crops (soybean and chickpea) confirmed the growth promotion activity of the two strains (Bacillus subtilis MpS15 and Paraburkholderia sabiae NvS21). The result showed significant (p < 0.05) enhancement in plant length and biomass with the seed treatment with strains (MpS15 and NvS21) compared to the control. Later both biocompatible potential strains were used in field experiments as individuals and consortia. Seed treatment of consortia significantly improves the nodulation and photosynthetic content more than individual treatments and control. Compared to the control, the co-inoculation of MpS15 and NvS21 increased soybean grain, straw yield, and grain NPK contents. Interestingly, soil parameters (organic carbon, available NPK) showed a strong correlation (p < 0.05) with plant parameters and nutrient uptake. Overall, our study provides strong relationships between soil parameters, microbial inoculum as consortia, and soybean performance, and these strains may be utilized as bioinoculant in future.

非共生细菌芽孢杆菌和副芽孢杆菌共接种可提高大豆产量、养分吸收和土壤参数。
由于其营养价值和油脂,大豆(Glycine max L.)成为印度和世界各地的经济作物。研究了森林相关植物促生根瘤菌(forest-associated plant growth-promoting rhizobacteria, PGPR)对大豆产量和籽粒养分含量的影响。基于它们的PGPR特性,本研究选择了5种潜在的细菌。以两种作物(大豆和鹰嘴豆)进行盆栽试验,证实了枯草芽孢杆菌MpS15和sabiae副aburkholderia NvS21的促生长活性。结果显示显著(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信