Acoustically excited microstructure for on-demand fouling mitigation in a microfluidic membrane filtration device

IF 4.9 Q1 ENGINEERING, CHEMICAL
Kieran Fung , Yuekang Li , Shouhong Fan , Apresio Kefin Fajrial , Yifu Ding , Xiaoyun Ding
{"title":"Acoustically excited microstructure for on-demand fouling mitigation in a microfluidic membrane filtration device","authors":"Kieran Fung ,&nbsp;Yuekang Li ,&nbsp;Shouhong Fan ,&nbsp;Apresio Kefin Fajrial ,&nbsp;Yifu Ding ,&nbsp;Xiaoyun Ding","doi":"10.1016/j.memlet.2021.100012","DOIUrl":null,"url":null,"abstract":"<div><p>Membrane separation is widely used in food, pharmaceutical and water treatment industries but suffers a longstanding challenge of fouling. In this article, acoustically excited microstructures are demonstrated as a new mechanism to mitigate membrane fouling and remove cake layer aggregations formed on a microfluidic membrane-on-chip device. With acoustic streaming induced by oscillating microstructures near the membrane surface, cake layer fouling was effectively broken up and removed on the acoustofluidic membrane separation device within 100 milliseconds. The device is simple to fabricate and offers direct observation of crossflow microfiltration across the device membrane, giving valuable insight to particle fouling events often unobtainable in traditional membrane device configurations. The device bolsters advantages like label-free and reagent-free particle separation and in situ membrane cleaning during separation, providing a new mechanism for membrane separation applications used across industry.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"2 1","pages":"Article 100012"},"PeriodicalIF":4.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277242122100012X/pdfft?md5=531394a96b888d8f968e08457e0938ff&pid=1-s2.0-S277242122100012X-main.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277242122100012X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 6

Abstract

Membrane separation is widely used in food, pharmaceutical and water treatment industries but suffers a longstanding challenge of fouling. In this article, acoustically excited microstructures are demonstrated as a new mechanism to mitigate membrane fouling and remove cake layer aggregations formed on a microfluidic membrane-on-chip device. With acoustic streaming induced by oscillating microstructures near the membrane surface, cake layer fouling was effectively broken up and removed on the acoustofluidic membrane separation device within 100 milliseconds. The device is simple to fabricate and offers direct observation of crossflow microfiltration across the device membrane, giving valuable insight to particle fouling events often unobtainable in traditional membrane device configurations. The device bolsters advantages like label-free and reagent-free particle separation and in situ membrane cleaning during separation, providing a new mechanism for membrane separation applications used across industry.

Abstract Image

微流控膜过滤装置中按需减少污垢的声激励微结构
膜分离广泛应用于食品、制药和水处理行业,但长期以来一直面临着污染的挑战。在本文中,声激励微结构被证明是一种新的机制,以减轻膜污染和去除饼层聚集形成的微流控片上的膜。利用膜表面附近微结构振荡引起的声流,在100毫秒内有效地将饼层污垢在声流膜分离装置上分解去除。该设备制造简单,可以直接观察设备膜上的横流微过滤,为传统膜设备配置中通常无法获得的颗粒污染事件提供有价值的见解。该设备具有无标签、无试剂的颗粒分离和分离过程中的原位膜清洗等优点,为跨行业的膜分离应用提供了一种新的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信