{"title":"Germline-related molecular phenotype in Metazoa: conservation and innovation highlighted by comparative transcriptomics.","authors":"Giovanni Piccinini, Liliana Milani","doi":"10.1186/s13227-022-00207-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In Metazoa, the germline represents the cell lineage devoted to the transmission of genetic heredity across generations. Its functions intuitively evoke the crucial roles that it plays in organism development and species evolution, and its establishment is tightly tied to animal multicellularity itself. The molecular toolkit expressed in germ cells has a high degree of conservation between species, and it also shares many components with the molecular phenotype of some animal totipotent cell lineages, like planarian neoblasts and sponge archaeocytes. The present study stems from these observations and represents a transcriptome-wide comparative analysis between germline-related samples of 9 animal species (7 phyla), comprehending also totipotent lineages classically considered somatic.</p><p><strong>Results: </strong>Differential expression analyses were performed for each species between germline-related and control somatic tissues. We then compared the different germline-related transcriptional profiles across the species without the need for an a priori set of genes. Through a phylostratigraphic analysis, we observed that the proportion of phylum- and Metazoa-specific genes among germline-related upregulated transcripts was lower than expected by chance for almost all species. Moreover, homologous genes related to proper DNA replication resulted the most common when comparing the considered species, while the regulation of transcription and post-transcriptional mechanisms appeared more variable, showing shared upregulated functions and domains, but very few homologous whole-length sequences.</p><p><strong>Conclusions: </strong>Our wide-scale comparative analysis mostly confirmed previous molecular characterizations of specific germline-related lineages. Additionally, we observed a consistent signal throughout the whole data set, therefore comprehending both canonically defined germline samples (germ cells), and totipotent cell lineages classically considered somatic (neoblasts and archaeocytes). The phylostratigraphic analysis supported the less probable involvement of novel molecular factors in the germline-related transcriptional phenotype and highlighted the early origin of such cell programming and its conservation throughout evolution. Moreover, the fact that the mostly shared molecular factors were involved in DNA replication and repair suggests how fidelity in genetic material inheritance is a strong and conserved driver of germline-related molecular phenotype, while transcriptional and post-transcriptional regulations appear differently tuned among the lineages.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"14 1","pages":"2"},"PeriodicalIF":4.1000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9885605/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-022-00207-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Background: In Metazoa, the germline represents the cell lineage devoted to the transmission of genetic heredity across generations. Its functions intuitively evoke the crucial roles that it plays in organism development and species evolution, and its establishment is tightly tied to animal multicellularity itself. The molecular toolkit expressed in germ cells has a high degree of conservation between species, and it also shares many components with the molecular phenotype of some animal totipotent cell lineages, like planarian neoblasts and sponge archaeocytes. The present study stems from these observations and represents a transcriptome-wide comparative analysis between germline-related samples of 9 animal species (7 phyla), comprehending also totipotent lineages classically considered somatic.
Results: Differential expression analyses were performed for each species between germline-related and control somatic tissues. We then compared the different germline-related transcriptional profiles across the species without the need for an a priori set of genes. Through a phylostratigraphic analysis, we observed that the proportion of phylum- and Metazoa-specific genes among germline-related upregulated transcripts was lower than expected by chance for almost all species. Moreover, homologous genes related to proper DNA replication resulted the most common when comparing the considered species, while the regulation of transcription and post-transcriptional mechanisms appeared more variable, showing shared upregulated functions and domains, but very few homologous whole-length sequences.
Conclusions: Our wide-scale comparative analysis mostly confirmed previous molecular characterizations of specific germline-related lineages. Additionally, we observed a consistent signal throughout the whole data set, therefore comprehending both canonically defined germline samples (germ cells), and totipotent cell lineages classically considered somatic (neoblasts and archaeocytes). The phylostratigraphic analysis supported the less probable involvement of novel molecular factors in the germline-related transcriptional phenotype and highlighted the early origin of such cell programming and its conservation throughout evolution. Moreover, the fact that the mostly shared molecular factors were involved in DNA replication and repair suggests how fidelity in genetic material inheritance is a strong and conserved driver of germline-related molecular phenotype, while transcriptional and post-transcriptional regulations appear differently tuned among the lineages.
期刊介绍:
EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo.
The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution.
All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology