Accuracy of high-order, discrete approximations to the lifting-line equation

J. Coder
{"title":"Accuracy of high-order, discrete approximations to the lifting-line equation","authors":"J. Coder","doi":"10.1017/aer.2023.16","DOIUrl":null,"url":null,"abstract":"\n The accuracy of several numerical schemes for solving the lifting-line equation is investigated. Circulation is represented on discrete elements using polynomials of varying degree, and a novel scheme is introduced based on a discontinuous representation that permits arbitrary polynomial degrees to be used. Satisfying the Helmholtz theorems at inter-element boundaries penalises the discontinuities in the circulation distribution, which helps ensure the solution converges towards the correct, continuous behaviour as the number of elements increases. It is found that the singular vorticity at the wing tips drives the leading-order error of the solution. With constant panel widths, numerical schemes exhibit suboptimal accuracy irrespective of the basis degree; however, driving the width of the tip panel to zero at a rate faster than the domain average enables improved accuracy to be recovered for the quadratic-strength elements. In all cases considered, higher-order circulation elements exhibit higher accuracy than their lower-order counterparts for the same total degrees of freedom in the solution. It is also found that the discontinuous quadratic elements are more accurate than their continuous counterparts while also being more flexible for geometric representation.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"671 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal (1968)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2023.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The accuracy of several numerical schemes for solving the lifting-line equation is investigated. Circulation is represented on discrete elements using polynomials of varying degree, and a novel scheme is introduced based on a discontinuous representation that permits arbitrary polynomial degrees to be used. Satisfying the Helmholtz theorems at inter-element boundaries penalises the discontinuities in the circulation distribution, which helps ensure the solution converges towards the correct, continuous behaviour as the number of elements increases. It is found that the singular vorticity at the wing tips drives the leading-order error of the solution. With constant panel widths, numerical schemes exhibit suboptimal accuracy irrespective of the basis degree; however, driving the width of the tip panel to zero at a rate faster than the domain average enables improved accuracy to be recovered for the quadratic-strength elements. In all cases considered, higher-order circulation elements exhibit higher accuracy than their lower-order counterparts for the same total degrees of freedom in the solution. It is also found that the discontinuous quadratic elements are more accurate than their continuous counterparts while also being more flexible for geometric representation.
提升线方程的高阶离散近似的精度
研究了几种求解起升线方程的数值格式的精度。采用变次多项式在离散元上表示循环,并引入了一种允许使用任意多项式度的不连续表示。在元素间边界满足亥姆霍兹定理可以消除循环分布中的不连续,这有助于确保随着元素数量的增加,解收敛于正确的连续行为。结果表明,翼尖奇异涡量是导致求解误差的主要原因。当面板宽度不变时,无论基度如何,数值格式的精度都不是最优的;然而,以比域平均更快的速度将尖端面板的宽度驱动到零,可以提高二次强度元件的恢复精度。在所有考虑的情况下,对于解决方案中相同的总自由度,高阶循环元素比低阶循环元素表现出更高的准确性。研究还发现,不连续二次元比连续二次元更精确,同时在几何表示上也更灵活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信