D. Merli, Johann Heyszl, Benedikt Heinz, Dieter Schuster, F. Stumpf, G. Sigl
{"title":"Localized electromagnetic analysis of RO PUFs","authors":"D. Merli, Johann Heyszl, Benedikt Heinz, Dieter Schuster, F. Stumpf, G. Sigl","doi":"10.1109/HST.2013.6581559","DOIUrl":null,"url":null,"abstract":"Among all proposed Physical Unclonable Functions (PUFs), those based on Ring Oscillators (ROs) are a popular solution for ASICs as well as for FPGAs. However, compared to other PUF architectures, oscillators emit electromagnetic (EM) signals over a relatively long run time, which directly reveal their unique frequencies. Previous work by Merli et al. exploited this fact by global EM measurements and proposed a countermeasure for their attack. In this paper, we first demonstrate that it is feasible to measure and locate the EM emission of a single tiny RO consisting of only three inverters, implemented within a single configurable logic block of a Xilinx Spartan-3A. Second, we present a localized EM attack for standard and protected RO PUFs. We practically investigate the proposed side-channel attack on a protected FPGA RO PUF implementation. We show that RO PUFs are prone to localized EM attacks and propose two countermeasures, namely, randomization of RO measurement logic and interleaved placement.","PeriodicalId":6337,"journal":{"name":"2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)","volume":"20 3","pages":"19-24"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2013.6581559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68
Abstract
Among all proposed Physical Unclonable Functions (PUFs), those based on Ring Oscillators (ROs) are a popular solution for ASICs as well as for FPGAs. However, compared to other PUF architectures, oscillators emit electromagnetic (EM) signals over a relatively long run time, which directly reveal their unique frequencies. Previous work by Merli et al. exploited this fact by global EM measurements and proposed a countermeasure for their attack. In this paper, we first demonstrate that it is feasible to measure and locate the EM emission of a single tiny RO consisting of only three inverters, implemented within a single configurable logic block of a Xilinx Spartan-3A. Second, we present a localized EM attack for standard and protected RO PUFs. We practically investigate the proposed side-channel attack on a protected FPGA RO PUF implementation. We show that RO PUFs are prone to localized EM attacks and propose two countermeasures, namely, randomization of RO measurement logic and interleaved placement.