Imaging the microscopic variation in spin properties of organic light emitting diodes

William J Pappas, R. Geng, A. Mena, Alex J. Baldacchino, A. Asadpoordarvish, D. McCamey
{"title":"Imaging the microscopic variation in spin properties of organic light emitting diodes","authors":"William J Pappas, R. Geng, A. Mena, Alex J. Baldacchino, A. Asadpoordarvish, D. McCamey","doi":"10.1117/12.2603441","DOIUrl":null,"url":null,"abstract":"Spin is a quantum property fundamental to the charge-light conversion process in optoelectronic devices. Organic materials offer unique opportunities to exploit spin due to their long coherence and lifetimes. The hyperfine interaction, which dominates the spin-dependent recombination processes of these materials, can be chemically tuned on a molecular level while retaining the large-scale fabrication techniques of those materials. To date, this property has been treated monolithically, characterized by a single value across a device. We utilize optical microscopy to spatially resolve the magnetoluminescence effect of an OLED and show the intra-device variation of this spin property reaches nearly 30%. We explore how the variation of this property changes with the operating bias to probe the underlying spin physics and show that these molecular-scale interactions are spatially correlated microscopically over the device.","PeriodicalId":19672,"journal":{"name":"Organic and Hybrid Light Emitting Materials and Devices XXV","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic and Hybrid Light Emitting Materials and Devices XXV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2603441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spin is a quantum property fundamental to the charge-light conversion process in optoelectronic devices. Organic materials offer unique opportunities to exploit spin due to their long coherence and lifetimes. The hyperfine interaction, which dominates the spin-dependent recombination processes of these materials, can be chemically tuned on a molecular level while retaining the large-scale fabrication techniques of those materials. To date, this property has been treated monolithically, characterized by a single value across a device. We utilize optical microscopy to spatially resolve the magnetoluminescence effect of an OLED and show the intra-device variation of this spin property reaches nearly 30%. We explore how the variation of this property changes with the operating bias to probe the underlying spin physics and show that these molecular-scale interactions are spatially correlated microscopically over the device.
有机发光二极管自旋特性的微观变化成像
自旋是光电器件中电荷-光转换过程的基本量子特性。有机材料由于其长相干性和寿命,为开发自旋提供了独特的机会。在这些材料的自旋依赖重组过程中占主导地位的超精细相互作用可以在分子水平上进行化学调整,同时保留这些材料的大规模制造技术。到目前为止,该属性一直被整体处理,其特征是整个设备的单一值。我们利用光学显微镜对OLED的磁致发光效应进行了空间解析,并发现该自旋特性在器件内的变化接近30%。我们探索了这种性质的变化如何随着操作偏置的变化而变化,以探测潜在的自旋物理,并表明这些分子尺度的相互作用在微观上是空间相关的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信