Silicon Metallurgy and Ecology Problems

K. S. Yolkin, A. Sivtsov, D. K. Yolkin, A. Karlina
{"title":"Silicon Metallurgy and Ecology Problems","authors":"K. S. Yolkin, A. Sivtsov, D. K. Yolkin, A. Karlina","doi":"10.18502/kms.v6i1.8073","DOIUrl":null,"url":null,"abstract":"Modern silicon production technology is associated with a risk of negative environmental impact due to the fact that in addition to the final product, other reaction products are formed, including dust, from the incomplete use of charge materials. Gases released during silicon smelting in ore-thermal furnaces are characterized by the content of a large amount of fine dust. Dust consists of 94–96% of silicon dioxide. As a result of the use of sulfur-containing raw materials in furnaces as sulfur reducing agents, sulfur compounds in the form of SO2 are present in the furnace gases entering for purification, and nitrogen oxides are also present. The developed silicon recovery smelting technology reduces the technological energy consumption and increases the furnace productivity in proportion to the amount of carbon replaced by silicon carbide. Replacing carbon with silicon carbide reduces the dust content and the amount of exhaust furnace gases, and changes their composition. Thus, reducing the amount of pollutants reduces their anthropogenic impact on the environment. \nKeywords: silicon, gas cleaning dust, gas capture system, microsilica","PeriodicalId":17908,"journal":{"name":"KnE Materials Science","volume":"386 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KnE Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/kms.v6i1.8073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Modern silicon production technology is associated with a risk of negative environmental impact due to the fact that in addition to the final product, other reaction products are formed, including dust, from the incomplete use of charge materials. Gases released during silicon smelting in ore-thermal furnaces are characterized by the content of a large amount of fine dust. Dust consists of 94–96% of silicon dioxide. As a result of the use of sulfur-containing raw materials in furnaces as sulfur reducing agents, sulfur compounds in the form of SO2 are present in the furnace gases entering for purification, and nitrogen oxides are also present. The developed silicon recovery smelting technology reduces the technological energy consumption and increases the furnace productivity in proportion to the amount of carbon replaced by silicon carbide. Replacing carbon with silicon carbide reduces the dust content and the amount of exhaust furnace gases, and changes their composition. Thus, reducing the amount of pollutants reduces their anthropogenic impact on the environment. Keywords: silicon, gas cleaning dust, gas capture system, microsilica
硅冶金与生态问题
现代硅生产技术伴随着负面环境影响的风险,因为除了最终产品之外,电荷材料的不完全使用还会形成其他反应产物,包括灰尘。矿热炉熔炼硅过程中释放的气体具有大量细粉尘的特点。灰尘中二氧化硅的含量为94-96%。由于炉内使用含硫原料作为还原剂,进入净化的炉气中存在SO2形式的含硫化合物,同时也存在氮氧化物。开发的硅回收冶炼技术降低了工艺能耗,并与碳化硅替代碳量成比例地提高了炉效率。用碳化硅代替碳可以减少粉尘含量和废气量,并改变其成分。因此,减少污染物的数量减少了它们对环境的人为影响。关键词:硅,气体净化粉尘,气体捕集系统,微二氧化硅
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信