A Comprehensive Reliability Characterization of 5G SoC Mobile Platform featuring 7nm EUV Process Technology

M. Jin, K. Kim, B. Kim, M. Kim, S. Kwon, Y. Cho, M. Lee, T. Jeong, M. Yeo, K. Choi, H. Sagong, T. Uemura, H. Jiang, D. Mun, W. Kim, E. Kwon, Y. Kim, H. Shim, H. Nam, J. Park, H. Rhee, S. Pae, B. Lee
{"title":"A Comprehensive Reliability Characterization of 5G SoC Mobile Platform featuring 7nm EUV Process Technology","authors":"M. Jin, K. Kim, B. Kim, M. Kim, S. Kwon, Y. Cho, M. Lee, T. Jeong, M. Yeo, K. Choi, H. Sagong, T. Uemura, H. Jiang, D. Mun, W. Kim, E. Kwon, Y. Kim, H. Shim, H. Nam, J. Park, H. Rhee, S. Pae, B. Lee","doi":"10.1109/VLSITechnology18217.2020.9265018","DOIUrl":null,"url":null,"abstract":"The product reliability of 7nm FinFET technology is demonstrated with 5G SoC platform. RO aging and other highspeed operating 5G IPs show an expected reliability model behavior, which has further improvement of frequency noise reduction through 3-plate MIM integration and high thermal conductivity EMC featuring ultra-low alpha particle (<0.002cph/cm2) emitter for the encapsulation of 5G product. Radiation effects are extensively examined at both chip and transistor level, proving the excellent SER and SEL due to less charge collection in narrow fin and robust TID effect. Degradation of 6T SRAM cell stability and performance caused by BTI is comparable to previous 10nm technology. Product level reliability is further evaluated through 256Mb SRAM array and AP/Modem for mmWave 5G connectivity. The current 7nm technology featuring EUV is being expanded to automotive, HPC and AI beyond high volume 5G system.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"120 32","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The product reliability of 7nm FinFET technology is demonstrated with 5G SoC platform. RO aging and other highspeed operating 5G IPs show an expected reliability model behavior, which has further improvement of frequency noise reduction through 3-plate MIM integration and high thermal conductivity EMC featuring ultra-low alpha particle (<0.002cph/cm2) emitter for the encapsulation of 5G product. Radiation effects are extensively examined at both chip and transistor level, proving the excellent SER and SEL due to less charge collection in narrow fin and robust TID effect. Degradation of 6T SRAM cell stability and performance caused by BTI is comparable to previous 10nm technology. Product level reliability is further evaluated through 256Mb SRAM array and AP/Modem for mmWave 5G connectivity. The current 7nm technology featuring EUV is being expanded to automotive, HPC and AI beyond high volume 5G system.
采用7nm EUV工艺技术的5G SoC移动平台可靠性综合表征
在5G SoC平台上验证了7nm FinFET技术的产品可靠性。RO老化和其他高速运行的5G ip表现出预期的可靠性模型行为,通过三板MIM集成和超低α粒子(<0.002cph/cm2)发射极的高导热EMC进一步改善了5G产品封装的频率噪声降低。在芯片和晶体管水平上广泛研究了辐射效应,证明了由于窄鳍中较少的电荷收集和强大的TID效应而具有优异的SER和SEL。BTI对6T SRAM电池稳定性和性能的影响与之前的10nm技术相当。通过256Mb SRAM阵列和用于毫米波5G连接的AP/调制解调器,进一步评估了产品级可靠性。目前以EUV为特色的7nm技术,除了大批量的5G系统外,还将扩展到汽车、高性能计算(HPC)和人工智能(AI)领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信