Current and Novel Therapeutical Approaches of Classical Homocystinuria in Childhood With Special Focus on Enzyme Replacement Therapy, Liver-Directed Therapy and Gene Therapy.
Stefan Bittmann, Gloria Villalon, Elena Moschuring-Alieva, Elisabeth Luchter, Lara Bittmann
{"title":"Current and Novel Therapeutical Approaches of Classical Homocystinuria in Childhood With Special Focus on Enzyme Replacement Therapy, Liver-Directed Therapy and Gene Therapy.","authors":"Stefan Bittmann, Gloria Villalon, Elena Moschuring-Alieva, Elisabeth Luchter, Lara Bittmann","doi":"10.14740/jocmr4843","DOIUrl":null,"url":null,"abstract":"<p><p>Classical homocystinuria is a hereditary defect of the enzyme cystathionine beta synthase, which is produced in the liver. If this enzyme fails, the synthesis pathway of cysteine from methionine is interrupted, leading to the accumulation of homocysteine in the blood plasma and homocysteine in the urine. After birth, the children are unremarkable except for the characteristic laboratory findings. Symptoms rarely appear before the second year of life. The most common symptom is a prolapse of the crystalline lens. This finding is seen in 70% of untreated 10-year-old affected individuals. As the earliest symptom, psychomotor retardation occurs in the majority of patients already during the first two years of life. Limiting factors in terms of life expectancy are thromboembolism, peripheral arterial disease, myocardial infarction, and stroke. These symptoms are due to the damage to the vessels caused by the elevated amino acid levels. About 30% suffer a thromboembolic event by the age of 20, about half by the age of 30. This review focus on present and new therapeutical approaches like the role of enzyme replacement with presentation of different novel targets in research like pegtibatinase, pegtarviliase, CDX-6512, erymethionase, chaperones, proteasome inhibitors and probiotic treatment with SYNB 1353. Furthermore, we analyze the role of liver-directed therapy with three dimensional (3D) bioprinting, liver bioengineering of liver organoids <i>in vitro</i> and liver transplantation. The role of different gene therapy options to treat and cure this extremely rare disease in childhood will be discussed.</p>","PeriodicalId":15431,"journal":{"name":"Journal of Clinical Medicine Research","volume":"15 2","pages":"76-83"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f4/5f/jocmr-15-076.PMC9990725.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Medicine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14740/jocmr4843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Classical homocystinuria is a hereditary defect of the enzyme cystathionine beta synthase, which is produced in the liver. If this enzyme fails, the synthesis pathway of cysteine from methionine is interrupted, leading to the accumulation of homocysteine in the blood plasma and homocysteine in the urine. After birth, the children are unremarkable except for the characteristic laboratory findings. Symptoms rarely appear before the second year of life. The most common symptom is a prolapse of the crystalline lens. This finding is seen in 70% of untreated 10-year-old affected individuals. As the earliest symptom, psychomotor retardation occurs in the majority of patients already during the first two years of life. Limiting factors in terms of life expectancy are thromboembolism, peripheral arterial disease, myocardial infarction, and stroke. These symptoms are due to the damage to the vessels caused by the elevated amino acid levels. About 30% suffer a thromboembolic event by the age of 20, about half by the age of 30. This review focus on present and new therapeutical approaches like the role of enzyme replacement with presentation of different novel targets in research like pegtibatinase, pegtarviliase, CDX-6512, erymethionase, chaperones, proteasome inhibitors and probiotic treatment with SYNB 1353. Furthermore, we analyze the role of liver-directed therapy with three dimensional (3D) bioprinting, liver bioengineering of liver organoids in vitro and liver transplantation. The role of different gene therapy options to treat and cure this extremely rare disease in childhood will be discussed.