Machine-Learning-Based Return Predictors and the Spanning Controversy in Macro-Finance

Manag. Sci. Pub Date : 2022-03-30 DOI:10.1287/mnsc.2022.4386
Jing-Zhi Huang, Zhan Shi
{"title":"Machine-Learning-Based Return Predictors and the Spanning Controversy in Macro-Finance","authors":"Jing-Zhi Huang, Zhan Shi","doi":"10.1287/mnsc.2022.4386","DOIUrl":null,"url":null,"abstract":"We propose a two-step machine learning algorithm—the Supervised Adaptive Group LASSO (SAGLasso) method—that is suitable for constructing parsimonious return predictors from a large set of macro variables. We apply this method to government bonds and a set of 917 macro variables and construct a new, transparent, and easy-to-interpret macro variable with significant out-of-sample predictive power for excess bond returns. This new macro factor, termed the SAGLasso factor, is a linear combination of merely 30 selected macro variables out of 917. Furthermore, it can be decomposed into three sublevel factors: a novel housing factor, an employment factor, and an inflation factor. Importantly, the predictive power of the SAGLasso factor is robust to bond yields, namely, the SAGLasso factor is not spanned by bond yields. Moreover, we show that the unspanned variation of the SAGLasso factor cannot be attributed to yield measurement error or macro measurement error. The SAGLasso factor therefore provides a potential resolution to the spanning controversy in the macro-finance literature. This paper was accepted by Haoxiang Zhu, finance.","PeriodicalId":18208,"journal":{"name":"Manag. Sci.","volume":"71 1","pages":"1780-1804"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manag. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/mnsc.2022.4386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a two-step machine learning algorithm—the Supervised Adaptive Group LASSO (SAGLasso) method—that is suitable for constructing parsimonious return predictors from a large set of macro variables. We apply this method to government bonds and a set of 917 macro variables and construct a new, transparent, and easy-to-interpret macro variable with significant out-of-sample predictive power for excess bond returns. This new macro factor, termed the SAGLasso factor, is a linear combination of merely 30 selected macro variables out of 917. Furthermore, it can be decomposed into three sublevel factors: a novel housing factor, an employment factor, and an inflation factor. Importantly, the predictive power of the SAGLasso factor is robust to bond yields, namely, the SAGLasso factor is not spanned by bond yields. Moreover, we show that the unspanned variation of the SAGLasso factor cannot be attributed to yield measurement error or macro measurement error. The SAGLasso factor therefore provides a potential resolution to the spanning controversy in the macro-finance literature. This paper was accepted by Haoxiang Zhu, finance.
基于机器学习的收益预测因子与宏观金融中的跨越争议
我们提出了一种两步机器学习算法-监督自适应群LASSO (SAGLasso)方法,该方法适用于从大量宏观变量中构造简约收益预测因子。我们将此方法应用于政府债券和917个宏观变量,并构建了一个新的、透明的、易于解释的宏观变量,该宏观变量具有显著的样本外预测能力。这个新的宏观因素,被称为SAGLasso因素,是917个宏观变量中仅30个选择的线性组合。此外,它可以分解为三个子层次因素:一个新的住房因素,一个就业因素,和一个通货膨胀因素。重要的是,SAGLasso因子的预测能力对债券收益率具有鲁棒性,即SAGLasso因子不受债券收益率的影响。此外,我们还证明了SAGLasso因子的无跨度变化不能归因于产量测量误差或宏观测量误差。因此,SAGLasso因子为宏观金融文献中的跨越争议提供了一个潜在的解决方案。本文被财经朱浩翔接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信