Predicting school transition rates in Austria with classification trees

IF 1.5 Q2 EDUCATION & EDUCATIONAL RESEARCH
A. Möller, A. George, Jürgen Groß
{"title":"Predicting school transition rates in Austria with classification trees","authors":"A. Möller, A. George, Jürgen Groß","doi":"10.1080/1743727X.2022.2128744","DOIUrl":null,"url":null,"abstract":"ABSTRACT Methods based on machine learning have become increasingly popular in many areas as they allow models to be fitted in a highly-data driven fashion and often show comparable or even increased performance in comparison to classical methods. However, in the area of educational sciences, the application of machine learning is still quite uncommon. This work investigates the benefit of using classification trees for analysing data from educational sciences. An application to data on school transition rates in Austria indicates different aspects of interest in the context of educational sciences: (i) the trees select variables for predicting school transition rates in a data-driven fashion which are well in accordance with existing confirmatory theories from educational sciences, (ii) trees can be employed for performing variable selection for regression models, and (iii) the classification performance of trees is comparable to that of binary regression models. These results indicate that trees and possibly other machine-learning methods may also be helpful to explore high-dimensional educational data sets, especially where no confirmatory theories have been developed yet.","PeriodicalId":51655,"journal":{"name":"International Journal of Research & Method in Education","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Research & Method in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1743727X.2022.2128744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Methods based on machine learning have become increasingly popular in many areas as they allow models to be fitted in a highly-data driven fashion and often show comparable or even increased performance in comparison to classical methods. However, in the area of educational sciences, the application of machine learning is still quite uncommon. This work investigates the benefit of using classification trees for analysing data from educational sciences. An application to data on school transition rates in Austria indicates different aspects of interest in the context of educational sciences: (i) the trees select variables for predicting school transition rates in a data-driven fashion which are well in accordance with existing confirmatory theories from educational sciences, (ii) trees can be employed for performing variable selection for regression models, and (iii) the classification performance of trees is comparable to that of binary regression models. These results indicate that trees and possibly other machine-learning methods may also be helpful to explore high-dimensional educational data sets, especially where no confirmatory theories have been developed yet.
用分类树预测奥地利的转学率
基于机器学习的方法在许多领域变得越来越流行,因为它们允许模型以高度数据驱动的方式拟合,并且与经典方法相比,通常显示出相当甚至更高的性能。然而,在教育科学领域,机器学习的应用仍然很少见。这项工作调查了使用分类树分析教育科学数据的好处。对奥地利学校转学率数据的应用表明,在教育科学的背景下,人们感兴趣的不同方面:(i)树以数据驱动的方式选择变量来预测学校转换率,这与现有的教育科学验证性理论非常一致;(ii)树可以用于执行回归模型的变量选择;(iii)树的分类性能与二元回归模型相当。这些结果表明,树和可能的其他机器学习方法也可能有助于探索高维教育数据集,特别是在尚未开发验证理论的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
5.00%
发文量
48
期刊介绍: The International Journal of Research & Method in Education is an interdisciplinary, peer-reviewed journal that draws contributions from a wide community of international researchers. Contributions are expected to develop and further international discourse in educational research with a particular focus on method and methodological issues. The journal welcomes papers engaging with methods from within a qualitative or quantitative framework, or from frameworks which cut across and or challenge this duality. Papers should not solely focus on the practice of education; there must be a contribution to methodology. International Journal of Research & Method in Education is committed to publishing scholarly research that discusses conceptual, theoretical and methodological issues, provides evidence, support for or informed critique of unusual or new methodologies within educational research and provides innovative, new perspectives and examinations of key research findings. The journal’s enthusiasm to foster debate is also recognised in a keenness to include engaged, thought-provoking response papers to previously published articles. The journal is also interested in papers that discuss issues in the teaching of research methods for educational researchers. Contributors to International Journal of Research & Method in Education should take care to communicate their findings or arguments in a succinct, accessible manner to an international readership of researchers, policy-makers and practitioners from a range of disciplines including but not limited to philosophy, sociology, economics, psychology, and history of education. The Co-Editors welcome suggested topics for future Special Issues. Initial ideas should be discussed by email with the Co-Editors before a formal proposal is submitted for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信