{"title":"Predicting school transition rates in Austria with classification trees","authors":"A. Möller, A. George, Jürgen Groß","doi":"10.1080/1743727X.2022.2128744","DOIUrl":null,"url":null,"abstract":"ABSTRACT Methods based on machine learning have become increasingly popular in many areas as they allow models to be fitted in a highly-data driven fashion and often show comparable or even increased performance in comparison to classical methods. However, in the area of educational sciences, the application of machine learning is still quite uncommon. This work investigates the benefit of using classification trees for analysing data from educational sciences. An application to data on school transition rates in Austria indicates different aspects of interest in the context of educational sciences: (i) the trees select variables for predicting school transition rates in a data-driven fashion which are well in accordance with existing confirmatory theories from educational sciences, (ii) trees can be employed for performing variable selection for regression models, and (iii) the classification performance of trees is comparable to that of binary regression models. These results indicate that trees and possibly other machine-learning methods may also be helpful to explore high-dimensional educational data sets, especially where no confirmatory theories have been developed yet.","PeriodicalId":51655,"journal":{"name":"International Journal of Research & Method in Education","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Research & Method in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1743727X.2022.2128744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Methods based on machine learning have become increasingly popular in many areas as they allow models to be fitted in a highly-data driven fashion and often show comparable or even increased performance in comparison to classical methods. However, in the area of educational sciences, the application of machine learning is still quite uncommon. This work investigates the benefit of using classification trees for analysing data from educational sciences. An application to data on school transition rates in Austria indicates different aspects of interest in the context of educational sciences: (i) the trees select variables for predicting school transition rates in a data-driven fashion which are well in accordance with existing confirmatory theories from educational sciences, (ii) trees can be employed for performing variable selection for regression models, and (iii) the classification performance of trees is comparable to that of binary regression models. These results indicate that trees and possibly other machine-learning methods may also be helpful to explore high-dimensional educational data sets, especially where no confirmatory theories have been developed yet.
期刊介绍:
The International Journal of Research & Method in Education is an interdisciplinary, peer-reviewed journal that draws contributions from a wide community of international researchers. Contributions are expected to develop and further international discourse in educational research with a particular focus on method and methodological issues. The journal welcomes papers engaging with methods from within a qualitative or quantitative framework, or from frameworks which cut across and or challenge this duality. Papers should not solely focus on the practice of education; there must be a contribution to methodology. International Journal of Research & Method in Education is committed to publishing scholarly research that discusses conceptual, theoretical and methodological issues, provides evidence, support for or informed critique of unusual or new methodologies within educational research and provides innovative, new perspectives and examinations of key research findings. The journal’s enthusiasm to foster debate is also recognised in a keenness to include engaged, thought-provoking response papers to previously published articles. The journal is also interested in papers that discuss issues in the teaching of research methods for educational researchers. Contributors to International Journal of Research & Method in Education should take care to communicate their findings or arguments in a succinct, accessible manner to an international readership of researchers, policy-makers and practitioners from a range of disciplines including but not limited to philosophy, sociology, economics, psychology, and history of education. The Co-Editors welcome suggested topics for future Special Issues. Initial ideas should be discussed by email with the Co-Editors before a formal proposal is submitted for consideration.