Efficient Query Obfuscation with Keyqueries

Maik Fröbe, Eric Schmidt, Matthias Hagen
{"title":"Efficient Query Obfuscation with Keyqueries","authors":"Maik Fröbe, Eric Schmidt, Matthias Hagen","doi":"10.1145/3486622.3493950","DOIUrl":null,"url":null,"abstract":"Search engine users who do not want a sensitive query to actually appear in a search engine’s query log can use query obfuscation or scrambling techniques to keep their information need private. However, the practical applicability of the state-of-the-art obfuscation technique is rather limited since it compares hundreds of thousands of candidate queries on a local corpus to select the final obfuscated queries. We propose a new approach to query obfuscation combining an efficient enumeration algorithm with so-called keyqueries. Generating only hundreds of candidate queries, our approach is orders of magnitude faster and makes close to real-time obfuscation of sensitive information needs feasible. Our experiments in TREC scenarios on the ClueWeb corpora show that our approach achieves a retrieval effectiveness comparable to the previous exhaustive candidate generation at a run time of only seconds instead of hours. Overall, 75% of the private information needs can be obfuscated while retrieving at least one relevant document of the original private query—that itself will not appear in the search engine logs. To further improve a user’s privacy, the query obfuscation can easily be combined with other client-side tools like TrackMeNot or PEAS fake queries, and TOR routing.","PeriodicalId":89230,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486622.3493950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Search engine users who do not want a sensitive query to actually appear in a search engine’s query log can use query obfuscation or scrambling techniques to keep their information need private. However, the practical applicability of the state-of-the-art obfuscation technique is rather limited since it compares hundreds of thousands of candidate queries on a local corpus to select the final obfuscated queries. We propose a new approach to query obfuscation combining an efficient enumeration algorithm with so-called keyqueries. Generating only hundreds of candidate queries, our approach is orders of magnitude faster and makes close to real-time obfuscation of sensitive information needs feasible. Our experiments in TREC scenarios on the ClueWeb corpora show that our approach achieves a retrieval effectiveness comparable to the previous exhaustive candidate generation at a run time of only seconds instead of hours. Overall, 75% of the private information needs can be obfuscated while retrieving at least one relevant document of the original private query—that itself will not appear in the search engine logs. To further improve a user’s privacy, the query obfuscation can easily be combined with other client-side tools like TrackMeNot or PEAS fake queries, and TOR routing.
使用键查询进行有效的查询混淆
搜索引擎用户如果不希望敏感查询实际出现在搜索引擎的查询日志中,可以使用查询混淆或置乱技术来保持其信息需求的私密性。然而,最先进的混淆技术的实际适用性相当有限,因为它比较了本地语料库上数十万个候选查询,以选择最终混淆的查询。我们提出了一种新的方法来查询混淆结合一个有效的枚举算法与所谓的关键查询。我们的方法只生成数百个候选查询,速度快了几个数量级,并使敏感信息需求的接近实时混淆成为可能。我们在ClueWeb语料库上的TREC场景中的实验表明,我们的方法在运行时间仅为几秒钟而不是几小时的情况下实现了与之前的穷举候选生成相当的检索效率。总的来说,在检索原始私有查询的至少一个相关文档时,可能会混淆75%的私有信息需求——该文档本身不会出现在搜索引擎日志中。为了进一步改善用户的隐私,查询混淆可以很容易地与其他客户端工具(如TrackMeNot或PEAS虚假查询)和TOR路由结合使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信