Micelle morphology observation method of lipopeptide by negative-staining-based transmission electron microscopy

Ruizhao Jiang , Lu Cai , Miaomiao Wang , Huimin Yu
{"title":"Micelle morphology observation method of lipopeptide by negative-staining-based transmission electron microscopy","authors":"Ruizhao Jiang ,&nbsp;Lu Cai ,&nbsp;Miaomiao Wang ,&nbsp;Huimin Yu","doi":"10.1016/j.biotno.2022.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Lipopeptides, novel biosurfactants showing versatile promising applications in enhanced oil recovery, textile industry, agriculture and daily chemical products, etc., are profoundly highlighted recently. Surfactin is one of the most typical representatives of lipopetide family. The critical micelle concentration (CMC) of surfactin is as low as 10–20 mg/L. When its concentration reaches above the CMC, different micelle structure will be formed and the surface-active performances might be changed with varied micelle morphologies. Thus, observation of the changes of surfactin micellar form at different concentrations is of great significance for its new applications. But so far, the micelle structure of surfactin (and also other lipopeptide molecules) is not reported yet, and the method for effectively observing the micelle morphology is limited as well. Here, we developed a method based on transmission electron microscopy combined with negative staining to observe the morphology of surfactin micelles, with which we can clearly observe the changes of micelle morphology of surfactin (or other lipopeptides) at different concentrations. Spherical micelles only form when the concentration of surfactin is low. With the increase in concentration, rod-shaped micelles of surfactin can form. Furthermore, complex rod-shaped-micelle-layer and big ring structure will form when the concentration of surfactin is very high.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 75-78"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000101/pdfft?md5=a307f0581f846960b89c5159e7078001&pid=1-s2.0-S2665906922000101-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906922000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lipopeptides, novel biosurfactants showing versatile promising applications in enhanced oil recovery, textile industry, agriculture and daily chemical products, etc., are profoundly highlighted recently. Surfactin is one of the most typical representatives of lipopetide family. The critical micelle concentration (CMC) of surfactin is as low as 10–20 mg/L. When its concentration reaches above the CMC, different micelle structure will be formed and the surface-active performances might be changed with varied micelle morphologies. Thus, observation of the changes of surfactin micellar form at different concentrations is of great significance for its new applications. But so far, the micelle structure of surfactin (and also other lipopeptide molecules) is not reported yet, and the method for effectively observing the micelle morphology is limited as well. Here, we developed a method based on transmission electron microscopy combined with negative staining to observe the morphology of surfactin micelles, with which we can clearly observe the changes of micelle morphology of surfactin (or other lipopeptides) at different concentrations. Spherical micelles only form when the concentration of surfactin is low. With the increase in concentration, rod-shaped micelles of surfactin can form. Furthermore, complex rod-shaped-micelle-layer and big ring structure will form when the concentration of surfactin is very high.

基于负染色的透射电镜脂肽胶束形态观察方法
脂肽作为一种新型生物表面活性剂,在提高石油采收率、纺织工业、农业和日化产品等方面具有广泛的应用前景。表面肽是脂肽家族中最典型的代表之一。表面素的临界胶束浓度(CMC)低至10 ~ 20mg /L。当其浓度达到CMC以上时,会形成不同的胶束结构,不同的胶束形态会改变表面活性性能。因此,观察不同浓度下表面素胶束形态的变化对其新的应用具有重要意义。但到目前为止,表面素(以及其他脂肽分子)的胶束结构尚未报道,有效观察胶束形态的方法也有限。在这里,我们开发了一种基于透射电镜结合阴性染色观察表面素胶束形态的方法,可以清楚地观察到不同浓度下表面素(或其他脂肽)胶束形态的变化。球状胶束只有在表面素浓度较低时才会形成。随着浓度的增加,表面蛋白可形成棒状胶束。当表面锡浓度很高时,会形成复杂的棒状胶束层和大环状结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信