Yannan Song , Shuo Li , Huifang Chen , Xinyi Han , Gregory J. Duns , Wubliker Dessie , Wufei Tang , Yimin Tan , Zuodong Qin , Xiaofang Luo
{"title":"Kaolin-loaded carboxymethyl chitosan/sodium alginate composite sponges for rapid hemostasis","authors":"Yannan Song , Shuo Li , Huifang Chen , Xinyi Han , Gregory J. Duns , Wubliker Dessie , Wufei Tang , Yimin Tan , Zuodong Qin , Xiaofang Luo","doi":"10.1016/j.ijbiomac.2023.123532","DOIUrl":null,"url":null,"abstract":"<div><p><span>There are several factors that contribute to the mortality of people who suffer from unmanageable bleeding. Therefore, the development of rapid hemostatic materials is necessary. Herein, novel rapid hemostatic composite sponges were developed by incorporation of kaolin (K) into carboxymethyl chitosan (CMCS)/sodium alginate (SA) </span><em>via</em><span> a combination of methods that includes ionic crosslinking, polyelectrolyte action, and freeze-drying. The CMCS/SA-K composite sponges were cross-linked with calcium ions<span> provided by a sustained-release system consisting of D-gluconolactone (GDL) and Ca-EDTA, and the hemostatic ability of the sponges was enhanced by loading the inorganic hemostatic agent-kaolin (K). It was demonstrated that the CMCS/SA-K composite sponges had a good porous structure and water absorption properties, excellent mechanical properties, outstanding biodegradability, and biocompatibility. Simultaneously, they exhibited rapid hemostatic properties, both </span></span><em>in vitro</em> and <em>in vivo</em>. Significantly, the hemostatic time of the CMCS/SA-K<sub>60</sub><span> sponge was improved by 82.76 %, 191.82 %, and 153.05 %, compared with those of commercially available gelatin sponges in the rat tail amputation, femoral vein, and liver injury hemorrhage models respectively, indicating that its hemostatic ability was superior to that of commercially available hemostatic materials. Therefore, CMCS/SA-K composite sponges show great promise for rapid hemostasis.</span></p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"233 ","pages":"Article 123532"},"PeriodicalIF":7.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813023004257","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
There are several factors that contribute to the mortality of people who suffer from unmanageable bleeding. Therefore, the development of rapid hemostatic materials is necessary. Herein, novel rapid hemostatic composite sponges were developed by incorporation of kaolin (K) into carboxymethyl chitosan (CMCS)/sodium alginate (SA) via a combination of methods that includes ionic crosslinking, polyelectrolyte action, and freeze-drying. The CMCS/SA-K composite sponges were cross-linked with calcium ions provided by a sustained-release system consisting of D-gluconolactone (GDL) and Ca-EDTA, and the hemostatic ability of the sponges was enhanced by loading the inorganic hemostatic agent-kaolin (K). It was demonstrated that the CMCS/SA-K composite sponges had a good porous structure and water absorption properties, excellent mechanical properties, outstanding biodegradability, and biocompatibility. Simultaneously, they exhibited rapid hemostatic properties, both in vitro and in vivo. Significantly, the hemostatic time of the CMCS/SA-K60 sponge was improved by 82.76 %, 191.82 %, and 153.05 %, compared with those of commercially available gelatin sponges in the rat tail amputation, femoral vein, and liver injury hemorrhage models respectively, indicating that its hemostatic ability was superior to that of commercially available hemostatic materials. Therefore, CMCS/SA-K composite sponges show great promise for rapid hemostasis.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.