A Study on the Impact of DE Population Size on the Performance Power System Stabilizers

IF 1.7 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Komla Agbenyo Folly, Tshina Fa Mulumba
{"title":"A Study on the Impact of DE Population Size on the Performance Power System Stabilizers","authors":"Komla Agbenyo Folly, Tshina Fa Mulumba","doi":"10.14201/adcaij.27955","DOIUrl":null,"url":null,"abstract":"The population size of DE plays a significant role in the way the algorithm performs as it influences whether good solutions can be found. Generally, the population size of DE algorithm is a user-defined input that remains fixed during the optimization process. Therefore, inadequate selection of DE population size may seriously hinder the performance of the algorithm. This paper investigates the impact of DE population size on (i) the performance of DE when applied to the optimal tuning of power system stabilizers (PSSs); and (ii) the ability of the tuned PSSs to perform efficiently to damp low-frequency oscillations. The effectiveness of these controllers is evaluated based on frequency domain analysis and validated using time-domain simulations. Simulation results show that a small population size may lead the algorithm to converge prematurely, and thus resulting in a poor controller performance. On the other hand, a large population size requires more computational effort, whilst no noticeable improvement in the performance of the controller is observed.","PeriodicalId":42597,"journal":{"name":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","volume":"41 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14201/adcaij.27955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The population size of DE plays a significant role in the way the algorithm performs as it influences whether good solutions can be found. Generally, the population size of DE algorithm is a user-defined input that remains fixed during the optimization process. Therefore, inadequate selection of DE population size may seriously hinder the performance of the algorithm. This paper investigates the impact of DE population size on (i) the performance of DE when applied to the optimal tuning of power system stabilizers (PSSs); and (ii) the ability of the tuned PSSs to perform efficiently to damp low-frequency oscillations. The effectiveness of these controllers is evaluated based on frequency domain analysis and validated using time-domain simulations. Simulation results show that a small population size may lead the algorithm to converge prematurely, and thus resulting in a poor controller performance. On the other hand, a large population size requires more computational effort, whilst no noticeable improvement in the performance of the controller is observed.
DE种群规模对电力系统稳定器性能影响的研究
DE的总体大小在算法的执行方式中起着重要的作用,因为它影响是否可以找到好的解决方案。通常,DE算法的总体大小是用户定义的输入,在优化过程中保持固定。因此,DE总体大小的选择不当可能会严重影响算法的性能。本文研究了在电力系统稳定器(pss)最优调谐中,DE种群大小对DE性能的影响;(ii)调谐后的PSSs有效抑制低频振荡的能力。基于频域分析评估了这些控制器的有效性,并通过时域仿真验证了其有效性。仿真结果表明,较小的种群规模可能导致算法过早收敛,从而导致控制器性能较差。另一方面,大的人口规模需要更多的计算工作,而控制器的性能没有明显的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
22
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信